ON THE KOLMOGOROV-SMIRNOV LIMIT THEOREMS FOR
EMPIRICAL DISTRIBUTIONS

By W. FrLLER

Cornell University*

Summary. TUnified and simplified derivations are given for the limiting forms
of the difference (1) between the empirical distribution of a large sample and the
corresponding theoretical distribution and (2) between the distributions of two
large samples.

1. Introduction. Let X, :--, X» be mutually independent random vari-
ables with the common cumulative distribution function F(z). Let X7, --- ,
X7 be the same set of variables rearranged in increasing order of magnitude.
The empirical distribution (or sum-polygon) of the sample X, , - -+ , Xy s the step
Sfunction Sy(x) defined by

0 forz < X1

(1.1) Sx(z) = { % for Xp <z < Xin

[ 1 forz > Xn.

In other words, N - Sy(x) equals the number of variables X, which do not exceed
z. We expect intuitively that Sy(x) — F(z) as N — . In fact, if this were
not so the notions of distribution and sample would be meaningless. The so-
called o’-criterion of von Mises [4] provides rough estimates for the probable
deviations of Sy(z) from F(z) for certain forms of F(x) (cf. von Mises [4]). A
much stronger result is due to A. Kolmogorov and is of great interest in the
theory of non-parametric estimation (Kolmogorov [3]). The maximum of the
deviation | Sy(z) — F(z) | is a random variable Dy whose distribution is easily
seen to be independent of the special form of F(z) provided only that F(z) is
continuous." The exact distribution of Dy is not known, but Kolmogorov found
that N*Dy has a limiting distribution. More precisely we have

TaeoreM 1 (Kolmogorov [1]). Suppose that F(x) is continuous and define
the random variable Dy by ‘

(1.2) Dy =lub.| Sx(x) — F(z) |.

*Research under an ONR contract.

1 This fact will not be used explicitly in the sequel but follows as a byproduct from our
proofs. A simple direct proof consists in considering the random variables = = F(Xy)
which are uniformly distributed; the maximum deviation Dy of the empirical distribution
of the new sample {Z;} from the uniform distribution has the same distribution as Dy;
cf. Kolmogorov [1].
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178 W. FELLER

Then for every firted z > 0 as N — o«
(1.3) Pr {Dy < 2N} — L(2)

where L (z) is the cumulative distribution function which for z > 0 is given by either
of the following equivalent relations’

19 Le)=1-22 (-7 ¢ = @m)ia 3 e
y= y=1
For z < 0 we have, of course, L(z) = 0.

Equally interesting is Smirnov’s result concerning the maximum difference
between the empirical distributions of two samples with the same cumulative
distribution.

TaeorEM 2 (Smirnov [5]). Let (Xi, -+, Xn) and (Y1, -+, Y,) be two sam-
ples of mutually independent random variables having a common continuous dis-
tribution F(x). Let Sn(x) and T.(z) be the corresponding empirical distribution
Sfunctions and define a new random variable D, » by

(1.5) D,n = lub.| S.(x) — Tu(2) |
Put

o
(1.6) N = m 4+ n

and suppose that m — «,n — = so that

(1.7) " S,

n
where a is a constant. Then for every fived z > 0
(1.8) Pr {D,.. < 2N — L(z),

where L(z) is the same as in (1.4).

The original proofs (Kolmogorov [1] and Smirnov [6]) are very intricate and
are based on completely different methods. Kolmogorov’s proof is based on an
auxiliary theorem of equal depth proved in a separate paper (Kolmogorov [2]).
An alternative proof of Kolmogorov’s theorem is due to Smirnov [5]. However,
Smirnov derives both theorems as corollaries to much deeper (but less useful)
results concerning the number of intersections of the graphs of Sy(z) and F(x) =+
eN? and of S.(z) and T.(x) = e N7}, respectively. It is, therefore, not
surprising that Smirnov’s proofs require a powerful technique and many auxiliary
considerations. It is the purpose of the present paper to present unified proofs
of the two theorems which are based on methods of great generality.’ The new

2 The equivalence of the two formulas in (1.4) is a well-known relation often called trans-
formation formula for theta-functions. We shall only prove the first representation in
(1.4). The second is ' more useful for small z. A table of L(z) is given in Smirnov [6].
It is reprinted in the present issue of the Annals of Mathematical Statistics (pp. 279-281).

3 Among other results which can be proved by the same method are certain limit theo-
rems for ruin and first-passage time problems in the theory of diffusion and random walks.
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‘proof is not simple but simpler than the original ones. At any rate, it requires
essentially only routine manipulations with generating functions and their
limiting form, the Laplace transforms. However, the paper aims mostly at a
unification of methods.

As a byproduct of the proof we obtain

TuEOREM 3. Let Ay be the number of points x where the step-polygon Sy (x)
of Theorem 1 leaves the strip F(z) &= 2N~ . The expected value of the random vari-
able Ay satisfies the asymptotic relation

(1.9) E(4y) ~ 2@2xN)H1 — &(22)},

where ®(z) is the normalized Gaussian distribution.

An analogous corollary to Theorem 2 was given by Smirnov [8]: formula (1.9)
holds also for the number of intersections of the graph of S..(x) with the step-
polygons T,(z) = 2N~ These results should come as a surprise to most statis-
ticians. According to Theorem 1 there is a positive probability that Ay = 0
and nevertheless E(Ay) is of the order of magnitude N ' The explanation
lies in the fact that 4f Sy(z) crosses the curve F(z) + zN* at some point then it
is extremely likely that S(z) will in some neighborhood continue to fluctuate
around values F(z) + 2N -1 crossing that curve a great many times. The differ-
ence Sy(x) — F(z) exhibits, in the limit N — «, many small oscillations. This
phenomenon is related to the well-known fact that the path of a particle subject
to the Einstein-Wiener diffusion process has no derivatives.

Instead of the absolute values of the differences we may consider the differ-
ences themselves and derive two parallel theorems for the maximum and the
minimum. As an example we shall prove

THEOREM 4. With the notations and assumptions of Theorem 1 let

(1.10) D¥ = lub.{Sy(zx) — F(z)}.
Then
(1.11) Pr{Di <z:NY -1 — %,

The proof is simpler than that of Theorem 1 but uses the same method.

2. Notations and preliminary remarks. For printing convenience it is desir-
able to avoid complicated subscripts and we shall therefore use the following
notaticn for bincmial coefficients

@2.1) Cln, k) = (Z) .
Similarly, for the general term of the binomial distribution we shall write

22) B, k;p) = Cln, k)p"(1 — p)" ™.
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If A is an event, 4 will denote its negation (complementary event). Finally
(2.3) Pr{4 | B}

denotes the conditional probability of A4 for given B.

Our proofs depend on a special case of the continuity theorem for charac-
teristic functions. Since we shall deal only with probability density functions
f(@) which vanish for ¢ < 0 it is preferable to use, instead of the characteristic
function, the Laplace transform

@4 o(s) = fo "0 d.

(This amounts to using the variable — s instead of the usual s and therefore
¢(s) obeys the formal rules for characteristic functions.)

For any sequence {u;}(k = 1, 2, ---) of non-negative numbers we define the
generating function u(\) by

(2.5) u) = 20w\
k=1
Now let 6 > 0 be fixed and consider the step-function f;(f) defined by
(2.6) i@ =up for(k — 1) <t <kd
k=1,2,---;f;(t) = 0fort < 0). Its Laplace transform is
&8
@) o(s) = T u(e™).
We have, therefore, the continuity-theorem: If, as 6 — 0,
(2.8) du(e™) — ¢(s),
then for every fixed t > 0
2.9) up — f({) when ké — t;

conversely, if (2.9) holds then (2.8) is true.

3. Proof of Theorem 1. Since F(z) is continuous it is possible to define num-
bers zi such that
k.
— k=12 ---,N —1).
oy ( )
This definition is unique except when F(x) = k/N within an entire interval, in
which case we define z, as the lefi endpoint of that interval.

Let ¢ > 0 be an integer. We shall evaluate the probability of the event
Dy > ¢/N and we shall later put

3.2) ¢ = zN*, N — «,

3.1) Flzy) = =
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Suppose first that for some particular z

(3.3) Sx(z) — Flz) > Nc-

This point z is contained in a maximal interval in which (3.3) holds and at the
right endpoint ¢ of this interval we shall have

B4 Sw(E) — F@) = ]%.

Now Sx(£) is necessarily a number of the form r/N with an integer ». Since ¢
is an integer also F(¢§) = k/N and hence £ = z; for some k. From (3.4) we
conclude that

(3.5) Xive < 21, Xirenn > 4

or in other words: exactly k 4 ¢ among the N variables X, are smaller than z .
Denote this event by Ax(c). The inequality (3.3) takes place for some z if, and
only if, at least one among the events 4,(c), - - - , An(c) occurs. The argument
applies equally to ¢ < 0 and shows that the event Dy > ¢/N occurs if, and only if,
at least one among the events

(3.6) As(e), Ai(—c), As(c), As(—c), -+, An(c), Ax(—c)

occurs.
Let U, and V, be the events that in the sequence (3.6) the first event to occur

are A,(c) or A,(—c), respectively. More formally, the events U, and V, are
defined by

U, = Ay(c)Ai(—c¢) -+ Ara(c)Ara(—c)A,(c)
V., = A-1(C);‘Il(—0) ce Ar—l(c)jr—l(—C)A—r(c)Ar(—c)°

These events are mutually exclusive and therefore

(3.8) Pr{D,, > ]%} = é Pr{U,} + z: Pr {V.}.

3.7

From the very definitions we have the following two fundamental relations

Pr {Aw(c)} = Zk; Pr {U,} Pr {Au(c) | Ar(c)}
+ Zj; Pr {V,} Pr {A:(c) | A(—0)}
(3.9) R
Pr [Ak(—C)} = 'z.; Pr {Ur} Pr {Ak(—c) I A,(C)}

+ 25 B (V) Br (4i(=0) | 4(=9).
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This is a system of 2N linear equations for the 2N unknowns Pr {U,} and
Pr {V,} and we proceed to solve it by the method of generating functions.

By definition of z; we have Pr {X, < 2x} = k/N. The probability of the event
Ax(c) (that the same inequality holds for exactly k + ¢ different »’s) is therefore
given by

(3.10) Pr {4i(c)} = BN, k + ¢; k/N)

(cf. (2.2)). Similarly, it is readily verified that for r < k

(8.11) Pr{di(c) |A.(c)} =BWN —r —c,k—r;(k —r)/(N — 7).

and

(8.12) Pr {Awc) |A/(—¢c)} =BWN —r+c,k—r+4 2¢;(k — r)/(N —1)).

The last three equations hold also for¢ < 0. They can be written in a more con-
venient form in terms of the quantities

(3.13) pie) = ¢ (—k}—j_j%)—'

In fact

(3.14) Pr {4x(0)) = PORAAZO
(3.15) Pr {4x() | 4,(0)} = P Oe=0)
(3.16) Pr {4x(0) | A(=0)} = ZL%@PTH)

If these expressions are introduced into (3.9) the second factor in the numerator
cancels. A further simplification is achieved on introducing new sets of un-
knowns

_ px(0) =
(3.17) u, = Pr {Ur} p—N:r—(_‘—E) v = Pr {V,-}

The fundamental equations (3.6) then reduce to

k k
pile) = ; Uy Pi—r(0) + ;1 v, Pr_r(2¢)

Dn (O)
pN—r(c) ’

(3.18) k | k
m(—c) = E 2y Pr—r(—2¢) + 2 v, pr_r(0).

This system is of the convolution type and can therefore be solved by means
of generating functions. The essential point is that the pi(c) are defined for
all & and that the system (3.18) therefore determines the unknowns u, and v,
for all » > 0. We put

(3.19) w() = gl WX o) = g;l o N
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and
(3.20) p(A; o) = N7 k; IORYE

(The factor N ¥ serves to simplify formulas.) Then obviously

p(;e) = uM)p®; 0) + 2(\)p(A; 2);
(3.21) ‘
p(\;—c) = uM)p(; —2¢) + v(\)p(A;0).
From here we find 4(A\) andv(\). Equation (3.17) then determines Pr {U,} and

Pr {V,}. Actually we are interested only in the two sums occurring in (3.%).
We put

N(O) Z pk—r( U , Ne = om (0) gl pk—r(c)vr .

Again, the £, and #;, are defined for all £ (also X > N). From (3.17) we have

B22) &=

(3.23) z=: Pr{U) =, 2 Pr{V} =,

and hence finally, by (3.8)
(3.24) Pr {Dy >c¢/N} = x4+ 1n.

In (3.22) we find again simple convolutions leading to products of the corre-
sponding generating functions. Thus

gk u)p(h; —c)N?
() = kZ_d N = ———

_ £ _ VWNDAS ¢
7(\) = kZ_,“l TN = o)

We now pass to a study of the limiting form of these generating functions
as N — o and ¢ — « in accordance with (3.2). Consider a fixed ¢ > 0 and sup-
pose that

(3.26) @N -t

From well-known properties of the Poisson distribution it follows then that

3.27) Npi(c) — @rt)texp(— 2*/20).
Accordingly, the continuity theorem of section 2 implies (as can be verified dir-
ectly) that

N N — @ [ 0 —ts — 2°/20) dt
(3.28) ple™" ; 2N*) — (27) -/(; exp (—ts — z°/2¢)

= (25)~F exp(— (2522)}).
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(the last integral is well known and can be evaluated by elementary methods;
the square-root is always positive). We see in particular that the limiting form
is the same for p(\; ¢) and p(\; — ¢). It follows therefore from (3.21) directly
that

— %)}
(3.29) lim u(@) = }&nw w(e™") = i jxf,gp ((iszs)s;!)é) .

Using this and the fact that py(0) — 2zN Y™} we conclude from (3.25) that
lim N7'g(e™") = hm N7 g(e™ ™)

N—w
(3.30) 27\"?  exp (— (8s)Y%) (
- <§;) 1 + exp (— (8s22)1%) ¢(s).
Expanding ¢(s) into a geometric series we get
1/2
(331) o6 = () 5 (-0 o (= Goty™.

From the evaluation of the integral in (3.28) we conclude that ¢(s) is the Laplace
transform of

(3.32) &) = 22 (=1 exp (=2'5"/1).
y=1
The continuity theorem of section 2 in conjunction with (3.30) and (3.26) shows

that
(3.33) lim gzv = hm nw = f(l)

N—w

In view of (3.24) this accomplishes the proof.

4. Proof of Theorem 4. This proof is simpler than the preceding one inas-
much as we are now interested only in the events Ax(c) for ¢ > 0. This time we
define U, as the event that k is the smallest subscript for which 4.(c) occurs, that
is, U, = Ai(c)A5(c) - -+ A,1(c)A.(c); no analogue to the event V, will be used.
With the same notations as before (3.9) is replaced by,

(4.1) r {Ax(c)} E Pr {U,} Pr {4:c) | 4:(c)},

and hence (3.21) by

4.2) p(\;¢) = u)p(r; 0).
Here p(A; ¢) is thé same as before, so that (cf. (3.29))
4.3) lim u(e™") = exp (— (2s2)").

N-—w

Again, the first equation (3.25) holds without change and therefore we get in-
stead of (3.30)

12
(4.4) lim N7'g(e™") = @%’) exp (— (8.
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From (3:28) this is the Laplace transform of
(4.5) @) = texp (— 2:4/0).

As before we conclude that £y — f(1), which accomplishes the proof.

6. Proof of Theorem 3. We have seen in section 3 that the intervals in which
(3.3) holds are in a one-to-one correspondence with the events Ai(c). Hence

(5.1) - E(Ax) = Z Pr {Au(0)} + 2 Pr {A(—0)}.
To evaluate the sums we use (3.10). If N — « and again ¢ = zN*, k/N — ¢,
then by the central limit theorem

exp (—2%/2((1 — ©))
" (2aNY(1 = p))v2

(5.2) BW, k + ¢; k/N) —
It follows then from (3.10) that

1
(53) N722 Pr {Ax(c)} — (27r)_1’2f0 {t(1 — )} ™ exp (22201 — ?)) dt.

Call the right hand member R. After the substitution ¢ = sin® (¢/2) we find

dR

/2
- _ —y2 . 2 0.2/ 2
i 8(2x) " 2 _£ sin”* ¢ exp (—2:°/sin” ¢) d¢

/2
(54) = 8(21) "%z exp (—25%) j; exp (—22° cot’ ¢) d (cot ¢)

= —2exp (—2:%.

Since B — 0 as z — « we conclude that
(5.5) R=2 f exp (—22%) dx = {1 — &(22)}(2n)"2

The same asymptotic estimate holds for the other sum in (5.1), and hence Theo-
rem 3 is proved.

6. Proof of Theorem 2. Reorder the two samples in ascending order
of magnitude and denote the rearranged samples by (X 5 oo, X2 and
vy ,+++, Y¥). When speaking of the graphs of the empirical distributions
Swm(z) and T,.(x) we shall suppose that they have been completed by adding
vertical segments so that the graphs become step-polygons. We shall put

m n

6.1) TR P wTa

Then, according to (1.6) and (1.7)

=q.

6.2) g-—> a, N =pn=qn.
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Without loss of generality we shall suppose that

(6.3) p=q

In order to carry over the proof of Theorem 1 it is necessary to define the
events A(c) in a judicious manner. For every integer k > 0 let », be the num-
ber of variables X, which are smaller than Y;. In other words, »; is defined
as the integer for which

©4) - X, <Yi < Xpn
Finally put

o-[3]-[2

where, as usual, [z] denotes the greatest integer contained in z.
For 0 < k& < nlet 4x(c) be the event that

(6.6) Ve = Qpic -
The possibility of applying the proof of section 1 depends on the following
Lemma. Whenever

(6.7) Dpn > 5 >0

then at least one among the events Aq(c), Ai(—c), ---, An(c), Au(—c) occurs.
Conversely, if one of these events occurs then

638) Dp. > <c - f;f) / n.

Proor. If (6.7) holds then either for some z,
6.9) Snlae) = Tala) > =

or the reversed inequality holds with ¢ replaced by — ¢. It suffices to consider
the case (6.9). For sufficiently large x we have S,(xr) = T.(z) = 1. Hence the
graphs of S.(zx) and T.(x) + ¢/n must intersect at an abscissa £ > z,. The
point of intersection lies necessarily on a horizontal segment of the graph of
Sx(z) and a vertical segment of T',(x) 4+ ¢/n. Hence there exists a k such that
£ = Y." and, moreover,

(6.10) Talt =) + 5 < 8al®) < Tult +) + =

This amounts to saying that

(6.11) I_c_-_—l—l—_c <% < k__+_c
n m n

In view of (6.3) and (6.5) this relation implies (6.6).
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Conversely, suppose that the event Ax(c) occurs and let ¢ > 0. Put again
£=Yr. Then, by definition,

_ Yk _ Ok _ Z‘.
It follows that
k+c 1 _ c_ 1
(6.13) m n ;I; - Tn(‘f) + % 7?& ’

which in turn implies (6.8). This proves the lemma.
Theorem 2 is concerned with values of ¢ such that en™
the limit we must therefore put

(6.14) ¢ = z(n/p)*.

Accordingly, the relations (6.7) and (6.8) are asymptotically equivalent and our
lemma shows that, asymptotically, the probability of (6.7) is the same as the
probability that at least one among the events A4i(c), ---, Ax(—c) occurs.
To evaluate this probability we proceed exactly as in section 3. The events
U, and V, defined by (3.7) and the fundamental relations (3.9) hold again,
However (3.10) — (3.12) have to be replaced by new evaluations.

It is easﬂy seen that the probdbility that exactly r among the X, are smaller
than Y is the same as the probability to extract exactly r white balls before the
k-th black ball from an urn containing m white and n black balls (assuming
that all orders are equally likely and that balls are not replaced). In this way
one finds

(6.15) Pr {Ai(c)} =

Pr {Ax(c) | 4.(c)}
6.16)  Clappe — arpe+h—1— Lk — 7 — 1)C(m +n — appo — b, n — &)
- Cm+n—a—1,n—71)

= 2N}, in passing to

C(a;,+¢+lc 1k—1)C(m+n—ak+c—k,n—k)
C(m + n,n)

Pr {Ax(c) | A(—0)}

6.17) _Clre—Orc+k—71—1, k—r—l)C(m+n—ak+c—kn—k)
Cm+n—a—.—1,n—71)

The second binomial coefficient in the numerator is common to the three ex-
pressions and cancels when the expressions are introduced into (3.9). These
fundamental relations assume a more natural form if the occurrmg binomial
coefficients are enlarged to terms of a binomial distribution. It is easily veri-
fied that the first of the equations (3.9) reduces to

Blaiye +k — 1,k — 1;9)

B(m +n,n;q)
- B(ayte — Qi + b — 1 — 1L,k —r —1;¢q)
6.18) N gPr tu} Bm+n — @4 — 1,0 — 13 9)

: B(ak+c—a,_,,+lc—r—1k—r-—-l,q)
+§1Pr{V Bm+n—gq_.—r,n—1;q)
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The second equation is obtained on replacing the combination k& 4 ¢ by
k— c.
Instead of (3.17) we put

_ B(m + n,n; q)
619 u, = Pr {U,} B(m + ,;(-— :’jc - 7‘,)n - 1;9)
_ m n,n;g
Uy Pr {VT} B(m + n — Qe —T,N — 7T, q).

Then (6.18) becomes
Blage + 5 — L,k — 1;9)

k
(6.20) = gl U Blarye — Gpe + b — 17— LE—1r—1;q)

k
+ZlvrB(ak+c"‘ar—c+k_r_lyk_r_1;Q)-

This corresponds to the first equation in (3.18). Unfortunately (6.20) is not
of the pure convolution type since @x+c — @+ and axc — - are not functions
of the two variables ¥ — r and ¢. The trouble comes from the fact that a,
as defined by (6.5), is not a linear function of k. It is, however, plausible that
we shall commit only an asymptotically negligible error if we omit the brackets
in (6.5), that is, if we replace ar by pk/q. Purely formally (6.20) then reduces
to the first equation in (3.18) with

(6.21) pile) = B( - 1Lk—-1; q).

kE+4+cp

q
(Here the first argument in the right hand member is no longer necessarily an
integer, and the factorials in the definition (2.2) should be interpreted by means
of the gamma function.) To the new system (3.18) the considerations of section
3 apply almost word for word: the only difference lies in the new norming (6.14)
(which replaces (3.2)) and that instead of (3.26) we shall naturally let k/n — ¢.
Thus the limiting form of Theorem 1 applies to the new system (3.18) with px(c)
defined by (6.2).

It remains to prove that the formal replacement of (6.20) and the corre-
sponding equation for — ¢, by (3.18) was legitimate. Now all coefficients
in (6.20) are of the form B(», 7; ¢), and we have only changed the first argument,
v, adding a variable quantity which in no case exceeds one unit. In passing to
the limit we put k& ~ in and ¢ ~ zn*p_*. It follows that we actually use only
coefficients B(v, 7; ¢) where » — «,r — © and »/r — g. Accordingly, for | ¢ |
< 1 we have B(v + ¢, r;q) ~ B(v,7;q), and it is rather obvious that our system
(6.20) is asymptotically equivalent to (3.18).
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