MIXTURE OF DISTRIBUTIONS
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Department of Mathematical Statistics, University of North Carolina

1. Summary. Mixtures of measures or distributions occur frequently in the
theory and applications of probability and statistics. In the simplest case it
may, for example, be reasonable to assume that one is dealing with the mixture
in given proportions of a finite number of normal populations with different
means or variances. The mixture parameter may also be denumerably infinite,
as in the theory of sums of a random number of random variables, or continuous,
as in the compound Poisson distribution.

The operation of Lebesgue-Stieltjes integration, f f(x) du, is linear with

respect to both integrand f(x) and measure u. The first type of linearity has as
its continuous analog the theorem of Fubini on interchange of order of integra-
tion; the second type of linearity has a corresponding continuous analog which
is of importance whenever one deals with mixtures of measures or distributions,
and which forms the subject of the present paper. Other treatments of the
same subject have been given ([1], [2]; see also [3], [4]) but it is hoped that the
discussion given here will be useful to the mathematical statistician.

A general measure theoretic form of the fundamental theorem is given in
Section 2, and in Section 3 the theorem is formulated in terms of finite dimen-
sional spaces and distribution functions. The operation of convolution as an
example of mixture is treated briefly in Section 4, while Section 5 is devoted to
random sampling from a mixed population.

We shall refer to Theory of the Integral by S. Saks (second edition, Warszawa,
1937) as [S], and the Mathematical Methods of Statistics by H. Cramér (Prince-
ton, 1946) as [C].

2. Mixture of measures in general. Let X(¥') be a space with points z(y)
and let £(9)) be a o-field of subsets of X(Y). Let » be a measure on . Let
wybefora.e. (v) y ameasure on %, such that u,(S) is for every S in X a measurable
(9) function of y. Define for every S in ¥,

(1) u(S) = ];p,,(S) d.

TarOREM 1. uis ameasure on¥. If v(Y) = py(X) = 1, then p(X) = 1.
Proor. Clear.
TaroreEM 2. If f(x) is any non-negafive or mnon-positive function measurable

(%) then the function

2 gy) = j; J(x) dpy
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is measurable (%), and
(3) j; fz) du = j; g(y) dv.
Proor. First let fo(x) be any non-negative simple function [S, p. 7] of the
form
(4) fo@) = {ar, 815+ ;ar, Si}

where the S; are disjoint sets in ¥ such that X = Y% 8; and the a; are non-negative
constants. Then

k
®) o) = [ @) duy = 2 ai(S)

is a non-negative function measurable (9)), and from (1) it follows that each side
of (3) is equal to > % au(S:). Hence the theorem holds in this case.

Next let f(z) be any non-negative function measurable (¥); then [S, p. 14]
there exists a sequence f.(z) of simple functions such that for every z,

(6) 0 <file) Sl < -- 5 lim fule) = f(x).
Setting
™ w@) = [ 1@ ds, g0 = [ 16w,

it follows from the theorem of monotone convergence [S, p. 28] and from the
preceding paragraph that

®) [ @) du = tim [ @) du = lim [ 9. o
©) 9@) = lim [ 1,(@) duy = lim guCo)-
From (6) and (9) it follows that for a.e. (»)y,

(10) 0< ) <) <--- 5 limga(y) = g@®).

n— 0

Hence g(y) is measurable (9)), and from the theorem of monotone convergence,

an [ @ dv = tim [ ) ..

n—0

Equation (3) now follows from (8) and (11).

By passing from f(z) to —f(x) we establish (3) when f(z) is any non-positive
function measurable (¥). This completes the proof of Theorem 2.

If f(x) is an arbitrary function measurable (¥) we define

if 0 if <0
(12 It = {f @ A 20 fo Hr@ =0

0 otherwise 0 otherwise

f—(x)={



362 HERBERT ROBBINS

so that
(13) f@) = @) + @)

is the sum of two functions measurable (X¥) of constant sign. By Theorem 2 the
functions

(14) gi(y) = fx =) duy, 9:(y) = fx @) dpy
are measurable () and

(15) 0< [ @ au= [ 0@ d < =,

(16) 02 [ 1@ du = [ p) v 2 .

The integral f f(x) du exists if and only if at least one of the two quantities (15)
X

and (16) is finite [S, p. 20].
TaEOREM 3. A necessary and suffictent condition that

17 fx f@) du = f,, { fx f(x) dﬂv} dv
1s that at least one of the two quantities (15) and (16) be finite.

Proor. By the remark preceding Theorem 3 the condition is clearly necessary.
Now suppose, e.g., that (15) is finite; we must show that (17) holds. By hypoth-

esis,

1) [fOd<e, [f@d=[r@d+ [ 16
From (18) and (15) it follows that 0 < g1(y) < « for a.e. (v)y; hence
19 [ @ dw = [ 1@ dn+ [ 7@ duy = 00) + 3

exists for a.e. (v)y. From the finiteness of (15) it follows that

(20) [ 0w +a) o= [ a@a+ [ o)
exists. Hence from (19), the integral
e L{ [ @ an } o = [ @) + s av

exists. Equation (17) now follows from (21), (20), (15), and (18). This com-
pletes the proof of Theorem 3.

CoroLLARY 1. If u(X) < o, and if f(x) ts bounded from above or from below,
then both sides of (17) exist and the equality holds.
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Proor. If,say,f(z) < C < «,then
0< [ @ du <€ u(X) <,
p-¢

and the result follows from Theorem 3.

We shall now show by an example that the existence and even the finiteness of
the right side of (17) does not imply the existence of the left side.

Let X =Y = {1,2,--- ,n, ---} and let ¥(9) consist of all subsets of X(¥).
Let » be the measure which assigns mass ¢, to n, where the c, are positive con-
stants such that Dy ¢, = 1. Let p, assign the mass 1/2n to each of the points
1,2 ---, 2n. Let f(z) be such that f(1) = by, f(2) = —by, f(8) = by, f(4)
= —by, - -+ where the b, are positive constants. Then

Lf(x)dm=0 (n=1,2y"‘),

fy{fxf(x) d;u,.}dv — 0.

so that

The measure p defined by (1) assigns to each n a positive value u(n) given by
b(1) = 1@ = e @7 + 0 227 + (283 -
pB) = p4) = 2+ (2:2)7 + 5+ (2:3)7 + -+

where u(X) = iu(n) = i:c,. =1.
Now fix the b, and ¢, in such a way that

bieu(1) + be-u(3) + ba'ﬂ(5) +oeee = o,
Then

[r@d==[1r@ad=-=,

so that the left side of (17) does not exist, even though »(Y) = p(X) = u(X) =
1 and the right side of (17) exists and is equal to zero.

3. A restatement of the preceding results in the form most useful in prob-
ability theory. Letz = (x1, - --, z.) be a point in the n-dimensional Euclidean
space R, , and let B, denote the o-field of Borel sets in R, . Let.S, denote the
half-open interval in R, consisting of all points (w1, -« , w,) in R, satisfying the
inequalities
(22) 'wlsxl,"',wnsxn;
then if p is any probability measure on B, the function

(23) F(z) = u(8.)
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is the distribution function corresponding to x. Conversely, if F(x) is any dis-
tribution function in R, [C, p. 80] there is a unique probability measure x on B,
such that (23) holds. As a matter of notation we write for any Borel measurable

@),
(24) [ 1@ au= [ fta) ara

provided the integral on the left exists.

Nowlety = (1, * ** , Ym) be a point in R,,, let G(y) be a distribution function,
and let » denote the corresponding probability measure on B, . Let F(z,y)
be for a.e. (»)y a distribution function in z, and for every x a Borel measurable
function of y, and let u, be the corresponding probability measure on B,, .

TrEOREM 4. The function

(25) @) = [ Fay) dow)

18 a distribution functionin R, .  Let p denote the corresponding probability measure
on B, . Then for any S in B, , u,(S) ts a Borel measurable function of y and

26) we) = | : 1 (S) dG ().

Proor. Let C denote the class of all Borel sets S in R, such that u,(S) is a
Borel measurable function of y. We shall show that C is a normal class [S, p. 83].

(i) If Si, Sz, --- is a sequence of disjoint sets in C and if S = -8, , then
1

#y(S) = ny (i Su) = 2?: py(Sn)

is a convergent series of Borel measurable functions and is therefore itself a Borel
measurable function.

(i) If 8y DS, D --- is a decreasing sequence of sets in C and if S = []S.,
1
then

n —» 00

wy(S) = my (i[ Sn) = lim p,(S.)

is the limit of a sequence of Borel measurable functions and is therefore a Borel
measurable function. ‘ , .

Hence C is a normal class. But C contains every interval S, for u,(8S;) =
F(z, y) was assumed to be a Borel measurable function of y for every z. It
follows [S, p. 85} that C = B,.

It now follows from Theorem 1 that the set function u(S) defined by (26)
is a probability measure on B, . The corresponding distribution function is the
function H(zx) defined by (25). Thus Theorem 4 is proved.
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Let f(z) = f*(x) 4+ f~(x) be any Borel measurable function. Then from Theo-
rem 2, the integrals

[[rrware - [ 1@ a{ [ reicw )

- f { f_ : 7)) d F(z, y)}dG(y),

L]
— o0

(27)

[r@ae = [~ 1@ a{[ reyaw )
(28) ) - -

- [ { [ 5@ a.re v } 46 ()

exist. The following theorem is an immediate consequence of Theorem 3 and
Corollary 1.
THEOREM 5. A necessary and sufficient condition that

@ [ ae{ [ ranaw ) = [{]" 1 e asw

is that the left side of (29) exist; i.e. that at least one of the quantities (27) and (28)
be finite. This will be true in particular if f(z) is bounded from above or from below.

4. The operation of convolution. An example of the general mixture (25)
of distribution functions is the operation of convolution: if F(x), G(z) are two
distribution functions in R, then F(x, y) = F(z — y) satisfies the conditions of
Theorem 4, so that

30) HE = [ P~ y) dow)

is also a distribution function in R, , denoted by
(31) H(z) = F(z) * G(z).

Corresponding to any distribution function F(x) in R, is the characteristic
function

(32) o) = [: ¢ dF ()

which in turn uniquely determines F(z) [C, p. 93].
THEOREM 6. Let F(x), G(x), H(x) be distribution functions in Ry and let ¢y(t),
@2(t), o(t) be the corresponding characteristic functions. Then

(33) H(z) = F(z) * Qx)
if and only if
(34) () = a1(t)-ea(t).
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Proor. Assume (33) holds. Since |¢**| < 1 we have from Theorem 5,

o) = [ o d,{ [ re-v dG(y)}

= f_:{f_: ¢ d. F(z — y) }dG(y)

(35) w w
_ [w ot {[m M= 4 e — v) } dG(y)

0

- f_ : ot { [_ " gt aF () } dG@) = o:(t) + eald)s

The converse implication now follows from the fact that the characteristic func-
tion of a distribution determines the latter uniquely.

The importance of the operation * in probability theory arises from the fact
that if X, Y are independent random variables with respective distribution func-
tions F(x), G(x), and if Z = X + Y, then the distribution function H(x) of Z
satisfies (33), since for any value of a,

H@ =PIX+ Y <d = [[ dF@) acw)
(36) 3 z4y<a 3}
- { [ @ } 164) = [ Fla - 4) d6G) = F@ + G@),

the evaluation of the double integral by an iterated integral following from
Fubini’s theorem [S, pp. 76-88]. However, (33) may hold without X, Y being
independent, and Theorem 6 shows that (34) will then hold also, and con-
versely.

An example where H(z) = F(z) * G(z) without X, ¥ being independent
has been given by Cramér [C, p. 317, exercise 2].” We shall give another. Let
points 0, A, - - - , F in the (z, y)-plane be defined as follows:

0= (07 0)1 4= (17 1): B = (1/21 1)’ C = (07 1/2)7 D = (17 0)7
E=(1,1/2),F = (1/2,0).

Let f(z, ¥) have the value 2 inside the quadrilateral 0ABC and the triangle DEF,
and 0 elsewhere. Then if f(x, y) is the joint frequency function of X, ¥ it is
easily seen that X and Y have uniform distributions on the intervals 0 < z < 1,
0 < y < 1 respectively and that Z = X 4 Y has the triangular distribution
given by (33), although X and Y are not independent.

It would be interesting to know what distribution functions F(x) are such that
if X,Y,Z = X 4+ Y are random variables with the distribution functions F(x),
F(z), F(x) * F(z) respectively, then X and Y are necéssarily independent. A
rather trivial example of such a distribution function is the step function F(x)
with jumps of % at the pointsz = 0 and x = 1. It can be shown (oral commu-
nication by W. Hoeffding), in generalization of Cramér’s example, that no abso-
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lutely continuous distribution function (e.g. the normal distribution function)
has this property.

6. The problem of random sampling from a mixed population. Let G(v) be
a distribution function in the real variable », and let F(u, v) be for a.e. (relative
to the measure corresponding to @) v a distribution function in the real variable
u, and for every u a Borel measurable function of ». Let

) @) = [ Flv) d60);

then by Theorem 4 H(u) is ‘a ‘distribution function in R;. Now define for
xr = (xl, cec ’xﬂ)7y = (yl, cte ,yﬂ)

H(z) = H(zy) + -+ H(za),
Gy) = Glyy) « -+ Gyn).

Both H(x) and G(y) are then distribution functions in R, . In particular, H(z)
is the distribution function of a random sample of n independent variates each
with the distribution function (87). Set

(39) F'(x, y) = F(xl’ yl) e F(xﬂ) yﬂ);

then for a. e. (relative to the measure corresponding to @)y, F(z,y) is a distribu-
tion function in z, and for every z, F(z, y) is a Borel measurable function of y.
By Fubini’s theorem we have

B@) = [ P, do)- - - [ Flaw, ) d0)

(38)

(40) = [ [P, - P, ) d0w) - a0

= [: F(z, y) d@(y).

Thus H (x) is itself a mixture in the sense of Theorem 4. It follows from Theorem
5 that for any Borel measurable function f(x),

(@ [ 1w am@ = [*{[ s 4. Ga, ) } ad),

if and only if the left side of (41) exists. When written out in full (41) becomes
‘[ oo e [ f(xl’ oo ’x“) dg‘ {[ F(xl,yl) dG(yl)}

(42) ---d,,{[:F(xn,y»)dG(yn)}=f_:“' f_w{f_

coe [:f(xl y 0, xn) dz; F(x],, yl) coe d,. F(:L‘,. N yﬂ)}dG(yl) cese dG(yn).



368 HERBERT ROBBINS

Equation (41) is of particular interest in connection with the distribution
of a statistict = t(x;, -+, 2s) = £(xr). For any distribution function J(z) let
K(t | J) denote the distribution function of ¢ when z has the distribution function
J(x). If we set

@) @ = {1 if t(z) < ¢,
Je) = 0 otherwise,

then

(8 K@) = [ 1) @

Hence from (41),

K@ HG) - He) = KGIH) = [ KG|Pa0) )
(49 o
= [w cee ‘[w K(t I F(x, yl) vor F(2a, Yn)) dG(yy) wee dG(Ya).

As an example, let ¢(z) be Student’s ratio

(46) t = ntz/s,
let

1 u
47) F(u,v) = -\-/—27 Lo e HO gy
and let

(0for v < — a,

(48) Gw) = (3for —a <v<aq,

lfor a <uo.

Then H(u) will be the distribution function of a mixture in equal proportions of
two normal populations with unit variances and with means —a, @ respectively,
and K(t|H(z:) - -+ H(z,)) will be the distribution function of ¢ in random
samples of n from this non-normal population. On the other hand, K(t | F(z:,
y1) -+ F(xn ,ys)) will be the distribution function of ¢ in sampling from successive
normal populations with unit variances and means y1, - -, ya respectively.
Relation (45) now becomes

(49) K( lH(xl) oo H(zn) = Z K(tlF(xl:yl) ce F(xn’yn))/zn,
Yis*oln
where the summation is over all 2" sets (y1, - - , ¥a), €ach y; being either —a

or a. Due to the complexity of K(t | F(z1, y1) -+ F(®a, ¥»)) (the frequency
function of which is discussed in a forthcoming paper by the author), relation
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(49) is not very useful. In other cases (45) may afford a considerable simplifica-
tion in the evaluation of the distribution function of a statistic obtained in
random sampling from a mixed population.
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