ON A SOURCE OF DOWNWARD BIAS IN THE ANALYSIS OF VARIANCE
AND COVARIANCE

By WirLiam G. Mapow

Institute of Statistics, University of North Carolina

1. Summary. It is shown that if, in the analysis of variance, the experiments
are not in a state of statistical control due to variations in the true means, then
the test will have a downward bias. The power function of the analysis of var-
iance test is obtained when this downward bias is present.

2. Introduction. To introduce the discussion of this bias let us consider the
generalized Student’s hypothesis.

Let y1, ---, yxx be normally and independently distributed with variance
o*, and let the expected value of ¥ , be a;,.' Then the generalized Student’s

hypothesis is
(Null hypothesis) ey = @

and the class of alternative hypotheses against which the null hypothesis is
tested is

(Class A) 4y = a; .

From the statement of the null hypothesis and the alternatives of Class A it
follows that both the null hypothesis and the alternatives of Class A require that

(1.1) Qg = *** = Gin.

Since our experiments are rarely in such perfect statistical control that (1.1)
holds whether or not the null hypothesis is true, it becomes reasonable to in-
vestigate the existing F test when instead of the alternatives to the null hypoth-
esis being of Class A, they are simply Class B:
(Class B) Equation (1.1) is false for at least one value of <.

Furthermore, for many practical purposes we would prefer to test the average
null hypothesis:

(Average null hypothesis) a; = a,

where Na; = aq + -+ + aiyand k@ = @ + --- + a, instead of the null
hypothesis, the alternatives to the average null hypothesis being of Class C.
(Class C) The a;, can have any values such that not all the @; equal 4.

1 Throughout this paper the letter < will assume all integral values from 1 to %, the letters
u,v will assume all integral values from 1 to N, the letters v,n will assume all integral values

from 1 to m, the letter @ will assume all integral values from n; + -+« + %, 4 1 to
n+ -+ + ny, (no = 0), and a; , a2 will assume all integral values from 0 to co.
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The F-test of the null hypothesis against the alternatives of Class A is, as is
well known,

k(N — 1) Z‘(ﬂi - g)°
S =12 e — )

where N§j; = ya + - +yivand kf = §1+ --- + §x. To answer the ques-
tions formulated above concerning the F-test when the average null hypothesis
or the alternatives of classes B or C are true, we must then calculate the dis-
tribution of F' under these various conditions. This is done in Section 3.

A somewhat informal means of obtaining the conclusions is that of studying
F itself. Taking the expected values of the numerator and denominator of F
and defining

2

N2 (@ —a)
T E=-De

¢g IC(N — 1) 2 E (a" di)z

we obtain as the ratio of the two expected values

= 14 ¢1
1443
It is well known that, in general, the larger the value of N the more closely will ¥
approximate F. From this fact it is easy to see why if the null hypothesis is true,
then F' ~ 1, whereas if the null hypothesis is false but an alternative of Class A
is true then

F~l44i>1

so that large values of F become more likely than if the null hypothesis were true.
However, if an alternative of Class B is true then

2
F~1+¢;
14 ¢2

so that if ¢} < ¢3, smaller values of F occur more frequently than indicated
by the null hypothesis. Thus we would tend to accept the null hypothesis more
frequently than desired when it is false. Even when the null hypothesis i is false
so that ¢ > 0, the values of F will tend to be less if ¢z > 0 than if ¢3 = 0
whether or not ¢ < ¢5. Not only is the probability of an error of the first kind
less than the value ¢ we may have previously selected, but also the power of the
test is less than would be indicated by Tang’s tables [1]. The lack of statisti-
cal control represented by variation of expected values within a class has the
effect”of making it less likely than the standard F-test indicates that the null
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hypothesis will be rejected whether it be true or false. Furthermore, even for
relatively low values of ¢3 , the reductions in the probabilities of rejection may
be over 40 per cent as indicated by some examples given below.

If the average null hypothesis is true but (1.1) is false it follows that

1
F~1var
so that the full effect of the downward bias occurs in that case. Thus in cases
where statistical control is lacking, to test the average null hypothesis by the F-
test may well result in accepting the hypothesis when it is false. If the null
hypothesis is rejected, however, then we can expect that the differences among
the true means are even larger than indicated by Tang’s tables.

To illustrate, it is shown in Section 4 that if ¥ = 5 and N = 7, then the prob-
ability of rejecting the average null hypothesis when it is true, but (1.1) is false
will not be the preassigned .05 but something less than .03 if ¢3 > .05. Fur-
thermore, if ¢; > .07, then the power of the F tests for this example will be re-
duced by at least 40 per cent whatever the value of ¢} .

The conclusions reached above remain valid for the analysis of variance and
covariance in general. In the general case however, the value of the average
null hypothesis in simplifying the analysis may be considerably reduced since
the parameter ¢; no longer vanishes when the average null hypothesis is true.
For example, if By, = 8,x,, and if the average null hypothesis is 8 = 0, where
NB = 61 + -+ + Bw, then upon calculating

X8’
2 - v
¢1 = o Z .

we see that ¢: will not vanish in general if B vanishes.

Although as shown above the average null hypothesis may not have too great
importance in the case of regression, yet if the “variance between treatments”
is a function of arithmetic means of the random variables as in the ‘‘pure”
analysis of variance the average null hypothesis may well be very useful. Simple
examples of this are provided by the randomized block, Latin square, and similar
designs.

The distributions that we shall need are given in Section 3. The inequalities
on the basis of which the bias is demonstrated are obtained in Section 4.

It would be highly desirable to have Tang’s tables extended so that they might
provide the answers to the questions raised by this source of bias. In the ab-
sence of such extensions the inequalities of Section 4 may give some rough
idea, but these inequalities are not sharp enough.

3. The calculation of the distributions. The following theorem was proved,
although not explicitly stated, as part of an earlier note [2]. (Note the change
from z; to y; as the notation for the random variable.)
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THEOREM 1. Let y1, -+, y~ be normally and independently -distributed with
variance ¢® and means ay , -+ , ay and let qi , -+ - , ¢ be quadratic forms
& =203 vy,

By

MY, ,ynof ranksny, -+, nm. Then, if an orthogonal transformation

Y = Z Couy
B

exists such that

(21) O = 2. 2%,

it follows that the random variables g,/c” are independently distributed in x' dis-
tributions with degrees of freedom ny , « -+ , Nm and paramelters A1, - -+ , Am , where

1 E
- — (€2) _ 49y _ Ny
M= 2% ”Zy Gur Oy Oy = 202 2

Various conditions for the existence of an orthogonal transformation satisfy-
ing (2.1) of Theorem 1 have been given. Among these are:
1. Cochran’s [3] condition. If > gy = > 2 then a necessary and sufficient
Y v

condition for the existence of an orthogonal transformation satisfying (2.1)
is > n, = N.
k4

2. Craig’s [4] condition. If A, denotes the matrix (a,'”) then a necessary
and sufficient condition for the existence of an orthogonal transformation satis-
fying (2.1) is A,4, = §,,A, Where §,, is the null matrix if ¥ # 7 and the identity
matrix if vy = 1.

3. Linear Hypothesis condition. (Kolodziejezyk [5]) If A be the likelihood
ratio test of a linear hypothesis and if E* = 1 — \*, then E* = ¢i/(q¢1 + @)
and an orthogonal transformation exists satisfying (2.1) with m = 2.

To summarize some results obtained by Tang [1], let us state

TueorEM 2. If xi* and x5° are independently distributed in distributions with

ny and n, degrees of freedom and parameters \1 and Az , and if
Bao X
x4+ xi
then the probability density of E” is
p = p(E | M, e, ma, m) = TEY I — B

(2.2) ASIAST <"‘ '; ™ 4w+ az>

(EH™(1 — EP™.
e i lan ! P(g + a,> r(gf + a2>
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By assigning certain values to A; and \. we obtain the following special cases
of (2.2)

pr=p(E |\, 0, mi,me) = (B ™D — BT

an M+ 12
(2.3) Al I‘(——z— + a1>
20

o aﬂI‘(%l + a1> 1‘(”—2">

p= p(E 0, N, ma, m) = HEY (L — E)

(B

n + me

20 . xé’*r( oy az) -

oz a2!r<%1) r(% + az)

p(E*|0,0, ny, m) = M
r(3)r(3)

It is noted that (2.3) is Tang’s distribution (112) upon which the calculations
of his tables were based. To see this we need only make the correspondence

@25) (BY MDY _ pryeain-1,

Thas paper Tang

M A
ny, ng f1 ,fz
(25} 'i

We define € to be the probability of an error of the first kind. Tang obtained
the critical values E? of E* by requiring that

1
fz Do dE2
EG

€ say .01 or .05.

P

Then he calculated
£y )
Pn='£ pl(El)\l,O,nl,m)dEz

using the values of E: obtained above. Hence 1 — P;; is the power of the test.
If, however, A1 = 0 but 2 # 0, then to find

1
Pur = [, (B0, %m0, no) B
e
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we could make the transformation > = 1 — E? and find
1—E2
P1u=£ p(GlO Xz,n;,m)dGz

It is easy to verify that
p(G 10, N, 11, m2) = pi(E*| N, 0, g, M)

if we put G in place of E* in the latter density. It follows that to calculate Pr
it would be sufficient to have full tables of Tang’s distribution since

l—E’
PI!I=‘£ p1(E|)\2,0n2 nl)dE’

Tang’s tables are not however sufficiently extensive. Furthermore, tables of
(2.2) are also necessary. As yet these tables do not exist. However, some useful
conclusions can be drawn from the inequalities obtained in the following section.

First, however, let us evaluate n; , 72, A1 and A; for the generalized Student’s
hypothesis discussed in the introduction. It is easy to see that n; = k — 1
and ny = k(N — 1). To evaluate \; and A, we note from Theorem 1 that we
only need substitute Ey;; for y;; in ¢; and g. where

= N2 @ —9)
= E (i — 7).
Upon making these substitutions we obtain

m=%2@—#
Ay = 1E(aw_ 1,2-

22
Thus the various hypotheses concerning the a;; influence the distribution of F
or E* = 1/(1 4+ Fm/n,) by affecting the values of \; and . .

4. Limits of the values of p. It follows readily from (2.2) that,

I‘("‘ + m)
= (E2)(nll2)—-1(1 _ E2)(n2/2)—1

2
oy r(3)r(3)

where

—)\1—)\2 Z )\1 >\2 (Ez)al(l E2)a3 Coqaz

aj.ag al’

(g aa)r(3)e()

Oalaz = .
r(’-;-‘+ a1>1‘<%+az)r<n1;m>
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Nowifa > 0,b > 0, and jis an integer > 1, we have

(50 +i) - (o pmatymn) < (+3)-

Hence, it follows that

nm + nz)“‘ (m + n + 2a1>°".

1 _<_ 0&1“2 _<_ <
m Ne
Substituting we see that
Do e-—)\l-)\z_e)\lEz-Hz(l—Ez) S P _<— poe“)\l—)\z

#2 -exp {Al E <n‘—::i‘2) exp [2——)‘2(1 — Ez)] + a0 - Ez)(’%@»

2

and

B3 m gt —ED p < pLexp [—)\2 + (1 — E%(’%h) + 2 -)‘—2]

Ng
Let 2nig: = N\i, 1 = 1, 2.
THEOREM 3. Lete = / 12 po dE® so that e is the probability of an error of the first
kind. Then, for all values :f &

! 2
(3.4) e> fE s dE
and if B > ny/(ny + ng), it follows that
1
(35) > ecexp{—2m¢s + 26:(1 — E)(m + m)} > f D2 dE® > e,
B
Furthermore, for all values of ¢s
1 1]
2 2
(3.6) LipldE >_/;§pdE,
and if B> > (ni + 2)/(n1 + ne), it follows that

1

1
[ prdBs > exp{=206} + 2630 — EDuu + o) 263) [, w1 o

(3-7) 1 1
> fE  pdE* > ¢ /; Py dE”.

Finally, if y can assume the two values 0 and 2, it follows that if
—log o
0,
2(E 4 m) — (m + )

(3.8) ¢ >
then if v = 0,

1
(3.9) [ maE* < e
EC
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and if y = 2
1 1
(3.10) [,paE <s [ par
E; E;

Proor. To prove (3.4) and (3.6). it is only necessary to follow Daly’s [6)
procedure.” Since

exp{ —2mes + 2¢3(1 — E*)(m + na) + o}
and
exp {— nz¢§E2}
are decreasing functions of E*, and

exp {— 2mes + 263(1 — E*)(m + ma) + v} <1
if
sty
> 1+ np
the inequalities (3.5) and (3.7) follow immediately from (3.2) and (3.3). Finally
exp {— 2m; + 263(1 — E*)(m1 + ma) + v42) <s <1

if (3.8) is true, so that (3.9) and (3.10) follow.

From (3.8), (3.9) and (3.10) we can calculate either a lower limit for the bias,
if we know ¢ , or the upper limit that ¢, can have if we wish the bias to be not
greater than some given amount. Thus these limits do not answer the important,
question of what is a value ¢ such that if ¢ < ¢ then the bias is less than (1 —
)e. They only provide a value ¢’ of ¢, such that if ¢5 > ¢’ then the bias is at
least (1 — d)e..

If, for example, § = .5 and n; = 1 as in the case of Students’ ratio; we have
fy=20

.693
2(na B2 — 1)
and if e = .05, then E* decreases steadily from .903 if n, = 2, to .063 if ny = 60
and the corresponding lower limits of ¢3 decrease from .43 to .12. Thus, if
¢3 > .43 or .12 in these two cases, it follows that the probability of rejecting the
average null hypothesis will be not .05 but something less than .025.

If 6 = .6 and n; = 4, n, = 30 then we can evaluate the lower limit of 3 for
the example given in the introduction finding.

511 _
2(.279)(34) — 8

implies a downward bias of at least 40 per cent of .05. Also, if ¢35 > .07 then for

¢ >

¢; > 05

2 The procedure followed is given in [6] on pp. 4, 5, equations (2.2) through Lemma 1.
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any value of ¢, the power of the analysis of variance test is reduced at least 40
per cent.

6. Conclusions. The rather sharp effects of a moderate lack of statistical
control on the probabilities associated with the F-test indicates the importance
of testing for statistical control outside of the industrial applications now made.
Furthermore, it would seem advisable to investigate tests and designs that are
less sensitive to the lack of control than is the F-test.
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