ON PREDICTION IN STATIONARY TIME SERIES

By Herman O. A. WoLp
Uppsala University

Summary. In time series analysis there are two lines of approach, here called
the functional and the stochastic. In the former case, the given time series is
interpreted as a mathematical function, in the latter case as a random specimen
out of a universe of mathematical functions. The close relation between the
two approaches is in section 2 shown to amount to a genuine isomorphism.
Considering the problem of prediction from this viewpoint, the author gives in
sections 3—4 the functional equivalence of his earlier theorem on the decom-
position of a stationary stochastic process with a discrete time parameter (see [9],
theorem 7). In section 5 the decomposition theorem is applied to the problem
of linear prediction. Finally in section 6 a few comments are made. Since
various aspects of the isomorphism in question are known, this paper might be
regarded as essentially expository.

1. Introductory. Let the sequence
(1) oty Tty Tty Tl
be an empirical time series such that no clear trend is present in the average
level, in the variance or in any other structural properties of the series which we
might choose to consider. Such series are usually called stationary. as distinct
from evolutive, terms which of course are somewhat loose when referring to
empirical data. We shall consider two approaches in the theoretical analysis of
stationary series. It is convenient to allow z: to be complex; the conjugate
complex of x; is denoted Z; .

In the functional approach, the sequence (1) is regarded as forming an infinite
sequence, say {z:}, where ¢ runs-from — « to 4. To define stationarity, let
us for any infinite sequence {z;} write

. 1 2
2 Mz =lm ——M— z h— —o,fp — 4 o),
() [2:] lmtz_t1+1t=tlt (1 [ + )

The limit M[z,], which will be called “the average of z.”, is clearly independent
of £. It is also seen that a necessary and sufficient condition for M[z,] to exist is
that the same average should be obtained when ¢, is kept fixed while £z — 4,
and when #; is kept fixed while {{ — — «. The stationarity of the sequence (1)
may now be brought out by assumptions of the type that the averages M|z} and
Mz, %41) exist, say
(3) M[x,] = m, M[x;'l—?H.k] =T (]C = 0, :!:1, :L‘.2, . ').

In the stochastic (or probabilistic) approach, we introduce an infinite sequence
of random variables, say

(4) "'7&—-1’&)23'“-:"' (~°°<t<+°°);
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or briefly {£,}. The sequence {£;} may be regarded as the generalization of the
notion of multi-dimensional variable, say [£ , - - - , £.], to an infinite number of
components £;. According to a basic theorem by A. Kolmogoroff (see e.g. [9],
§11), the probability distribution of the sequence {£,} may be defined by specify-
ing for any finite set of variables, say (&, - -+, &,], its multi-dimensional dis-
tribution function, say

5) Fug, - yunjti, -+, ta) =Prob (¢, <w, -+, &, < u).

The sequence {£} thus defined is said to constitute a stochastic process. As is
sufficient for our purpose, we confine ourselves to the case when the time parame-
ter ¢ is restricted to discrete values, ¢ = 0, +1, £2, ...,

hw

Fi1a. 1

Now in the stochastic approach, the empirical time series (1) is regarded as a,
sample specimen, a realization, of the stochastic process { &:}, just as a point
[x1, - -+, #,] in an n-dimensional space may be regarded as a sample specimen
of a multidimensional variable [§ , - - - , £,]). In line with this interpretation, the
process {£;} may be regarded as a universe of individual realizations such as (1)
(see the graph). Taking out a realization at random from this universe, we shall
have the probability,

F(uy; t) = Prob (¢, < w),

that the value taken on by the realization at the time point ¢ will be <u; ;
similarly,

F(u1 y U ty , tg) = Prob (5“ < U, 512 < 'ng),
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is the joint probability that the values taken on by the realization at ¢ and %
will be <u; and <u, respectively.

Any expectation referring to the variables (4) may be expressed in terms of the
distribution functions (5), for instance

Bigd = [ wdFs), Bt = [ [ wodhoFvn, ),

Again interpreting in terms of the universe of realizations, E[£;], say, is the aver-
age, over this universe, of the value taken by the realizations at the time point {.

The above definition of a stochastic process (4) being perfectly general, we have -
to impose special assumptions if we wish to take into account particular proper-
ties of the given time series (1). Thus stationarity of the process (4) may be
defined by assuming that any probability of the type (5) will remain the same
ifty,--- ,tsisreplaced by t; + ¢, - - - , ¢, + t, where t is arbitrary. Alternatively,
and more generally, the stationarity of the sequence (1) may be brought out in
this approach by assuming that the expectations

E[Et] = Ky E[Et'§t+k] = Pk

exist and are independent of ¢.

2. The functional and stochastic approaches are closely related as to problem$
and results. A typical example is that r, and pr as defined above allow the
representations’

L

(6) = [ ¢™dFQ), o = f ™ da(\), (k =0, £1, £2, ---),
where F(\) and ®(\) are real, bounded and never decreasing functions. We
shall now show that the parallelism between the two approaches amounts to a
mathematical isomorphism. On the one hand, we recall that A. Kolmogoroff
[3], [4] has introduced and studied the notion of a stationary sequence in Hilbert
space,—let such a sequence be denoted {X.}—, and shown that a stationary
stochastic process {£;} forms a particular realization of this general, abstract
{X:}. On the other hand the following elementary lemma shows that another
realization of {X;} may be formed on the basis of a stationary sequence {xz:}
such as (1).

LemMa. Let {x.} be a sequence of type (1) which satisfies the conditions (3) but
18 arbitrary in other respects. We write

(7) {xt}ﬁ"';xt—l;xtyxt+1"")

where x; = {x.}, and X.1x 1S obtained from x; by replacing x: by x.4x for every t.

1 As to 7, see N. Wiener [8], who treats the case of a continuous time parameter ¢.
As to px , see H. Wold [9], p. 66, and A. Kolmogoroff [4], p. 5.
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For the elements x, , let multiplication by a real or complex constant and addition
be defined by

ax, = {ax.}, x +y. = {z. + yi},
and let R be the class formed by all elements of the type
ConXt—n + Cont1Xt—n+1 + e + CoX¢ + ce + CnXtmn o

where n and ¢, - -, ¢, are arbitrary. Let the inner product (x., y:) of two
elements x; = {x:}, y. = {y:} in R be defined by

(s, y1) = Mlze-Fe),

and let R’ be the closure of R.

Then R’ is a space the dimension of which is denumerable or finite. In the
former case, R’ satisfies the conditions of a Hilbert space H, in the latter case it can
be extended to a Hilbert space H. In any case, the relations

@®) Ut = %41, —o <t< 4o,

define a unitary transformation U in H.

The first statement of the theorem is obvious. It is also easily verified that
R’ satisfies the conditions A-C of an abstract Hilbert space as defined by
B.v.Sz. Nagy [7]. If R'is of finite dimension, a suitable extension will make R’
satisfy the conditions A-F of a Hilbert space as defined by M. H. Stone [6].
The transformation U is clearly unitary; it is also plain that the definition (8)
of U extends to the whole of H.

Now since both (4) and (7) are particular realizations of a stationary sequence
{X.} in Hilbert space, any theorem on such a sequence {X,} will give, as imme-
diate corollaries, similar theorems on a stationary sequence {z:} of type (1) and
on a stationary stochastic process {£#:}. Generally speaking, the former corol-
lary will involve averages of one or more functional sequences {z:}, {y:}, ---
over time ¢, while the latter will involve averages, for fixed ¢, over the realizations
of one or more stochastic processes {&:}, {y:}, - - -

Let us consider the following problem of prediction in the light of the iso-
morphism established: Suppose the data (1) are known up to ¢ — 1, say for
t—1,t— 2,---,t — n, what can then be said about z,, or, more generally,
about z:4x? One approach to the problem is to apply harmonic analysis to the
given data, and to extrapolate the function obtained up to the time point ¢ + k.
Another approach, the one which we shall consider, is to approximate x4
directly in terms of the given data. Confining ourselves to linear prediction,
and making use of n observations, the prediction formula will then be

. . * b
@  pred. 2 = o™ + a{"P2xi + af" P2 + - + al P,
The error of prediction, also called the residual, is denoted

(10) y(:l':f) = Zy4x — pred. Teqr .
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Considering first the functional approach, we apply formula (9) for all ¢,
thus obtaining the residuals

(n.k) (n,k) (n.k)
t Ty Y,

y Y1, Y

In this approach we are led to regard the residual variance, i.e.
(11) M|y [,

as a total measure of the accuracy of the prediction. If we follow the stochastie
approach, on the other hand, the formula (9) is applied, for fixed ¢, to all realiza-
tions {z:} of the process {£}. In this case, the variance expectation,

(12) By I,

is regarded as a total measure of the accuracy of the prediction. The prediction
coefficients a{™® are determined by minimizing the expressions (11) and (12),
respectively.” It needs no further comment that the two lines of approach in
prediction theory will, thanks to the isomorphism indicated, lead to parallel
results.

In a study of stationary stochastic processes, the author has earlier found a
decomposition theorem which has a direct bearing on the prediction problem
(see [9], theorem 7). The main purpose of the present note is to develop the
corresponding decomposition for a functional sequence of the type (1). Two
theorems on this line are given in sections 3-4. The proofs are briefly indicated;
for further details, the reader is referred to my treatment on the stationary
process [9]. In section 5, the decomposition is applied to the prediction problem.
A few comments follow in section 6.

3. Auto-regression analysis of stationary time series. Let {z;} be an infinite
sequence (1) such that the conditions (3) are fulfilled. By (9)-(10), the resid-
uals y{™” will be well-defined for every n and ¢. According to elementary
properties of least square residuais, we have

(13) My = 0; My .z =0fork=1,2 --,n.

Since the minimum variance cannot increase if we replace n by n + 1, we further
have

M| 2| 2 MUy ") 2 M [y 17 > 0.
Making n — o, we infer that there is a constant d” such that

lim M[|y™ ] = d* > 0.

n—>0

2 For real sequences {z;} and {gt}, this minimization is, of course, nothing else than the
method of least squares.
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Making use of the Gram-Schmidt orthogonalization procedure, it is further
possible to show that there exists a sequence {y.} such that

lim M[Iyg”'O) -y, I2] —

n —> 00

In the usual terminology, the sequence {y.} is the limit in the mean of the se-

quence {y{"”},
(14) Lim. (-, g2, g%, g0, o) = o Yo, Yy Yagr,

We may remark that (14) does not necessarily imply that y$™ will for a fixed
t have y; for an ordinary limit. We also note that the limiting sequence {y;}
is not uniquely determined; for instance, the relation (14) remains valid if a
finite number of the elements ¥, are modified.

As is easily shown, we have

(15) lim Mlyi"” ) = Ml|ye ] = Mlye-@] = d* 2 0,
and [cf. (13)]

(16) Mly&es] = 0, E=12---.
Moreover, the sequence {y.} is non-autocorrelated, i.e.

@17 Mygus] =0, k= £1, +£2,---

In fact, observing that

M[y;yz+k] = lim M[?lgn 0 y§f° k= 1,2 -

and supposing that (17) is not true, we would have

(18) | Mly?® g2 | > a > 0,

as v runs through some sequence 7y, 7z, - - - , such that n; — «. The relation
(18), however, would imply

(19) M| y¢? — ey |1 < & (1 — 3dY)

for some sufficiently large » and for some suitable ¢. Since y{"” — cy"% is a

linear expression of the type appearing in the right hand member of (9), the
relation (19) is incompatible with (15). Thus (18) is not possible and (17) must
hold good.

Part of the above analysis is summed up in

THEOREM 1. Given a time series {x.} which satisfies (3), let ¢ > 0 be arbitrary.
Then an integer n and a set of coefficients ai™® exist for which (9) defines a residual
series {y{™”} such that

Myl =0, |My"m?-gi0T <e k= 1,2 -
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4. A decomposition theorem. We shall first consider the special case where
(15) gives

(20) Ml|y:|")=d" =0,
which is the same as
Lim. (- g§"®, g ..0) = (-+-,0,0, --).

In this case we shall say that the sequence {z.} is deterministic,? the interpreta-
tion of this term being as follows: Given the sequence {z.} for all time points up
to and including ¢ — 1, we may, by the use of a finite number of the given values,
predict 2,41 with any accuracy; i.e., with a residual error of arbitrarily small
variance. This can be shown by induction. In fact, suppose that we are able
to predict each of z;, - -+, Z;14—1 in such a way that the prediction error has a
variance < ¢, where e is arbitrarily prescribed. Letting § > 0 be arbitrary, we
can then find a formula of type (9) which predicts z:1+x in terms of the exact

values Z;1r1, ZTitk-2, -+ and which gives a residual variance §/(k + 1).
Replacing here 2,441, - - - , z: by values so predicted that the residual variances
are less than 8/(k + 1) |ai™® |, - -+, 8/(k + 1) | a{™® |, it is seen that the total

error of (9) will have a variance < é.

We proceed to the general case, d* > 0. According to the above analysis,
y. is that part of z, which cannot be linearly predicted from the previous observa-
tions Z¢_1, T2, -+ . In other words, each time point ¢ brings in an unpredict-
able, random-like element y, in the series {r.}. Now while from (16) y. is
uncorrelated with the previous observations x;—1, ;2 , - - - , it will in general be
correlated with the future observations z:i1, %2, ---. Thus the unpre-
dictable element %, may be regarded as influencing the future development
Ziqa, Tegs , - - - Of the series {z;}. In order to examine this influence we proceed
as follows.

We approximate x; linearly in terms of y;, y¢—1, - - * , Ye—n , Writing

T = by + biea + oo + bayen + uf” = 28" + ul”.
Determining the coefficients b; by minimizing
M|z — 27 |7,
the coefficients b, will thanks to (16)—(17) be independent of n. We obtain
bo=1; by = Mlze-gesl/d’, k=1,2,---.

The sequence {z{™} thus being determined for every n, it is further easily shown
that {z{™} converges in the mean, say to {z.},

(21) Lim. (-, 28", 28", ) = (-, 2, 20, - ).

n—> 0

3 The term is due to J. Doob [1]; in my study [9] I used the term singular.
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We may thus write

2o =Y+ bwyer + boyr2+ -+,
where the sum converges in the mean. Finally, we write
(22) T = 2y + U,

which gives a decomposition of the series {x;} into two components {z,} and
{ut} .

In the decomposition (22) the component z, is that part of 2, which is linearily
built up by the unpredictable elements {y.} up to and including the time point
t. From (17) we know that the sequence {y.} is non-autocorrelated. It can
further be shown that the square modulus sum of the coefficients by is convergent,

0
2 b |? < o,
k=0

As to the component u, , it can be shown that {u} is deterministic. More
precisely, we have

Lim. {u — @$™® + ai"Puy + -0 + af.""”u...n)} = {0}

n—o0

- where the a{™"® are the same as the minimizing coefficients of (9). It can further
be shown that u, is uncorrelated with ¥,z and 2.4 for all £,

Mlugia] = Muzii] = 0, (k =0, %1, £2,---).

Summing up the above results, we obtain

THEOREM 2. Any time series {x.} which satisfies the conditions (3) allows the
decomposition
(23) {ze} = {20 + ud,

with
{z:} = Lim. {g; + b1yes + DeYes + -+ + ba¥ianl,

n-—>0

where the series {y:}, {2:} and {w.} have the following properties.
A. The elements y. , 2; and u, are obtained from x;, x4, « -+ by the limat for-

mulae (14), (21) and (22).
B. The series {y.} has zero mean,

Mly] = 0,
1s non-autocorrelated,
My = 0, k= %1, £2,---,
and is uncorrelated with {x. .}, {®is}, -+,
Mly: &4 =0, k=12 -
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C. The series {u:} is uncorrelated with {y:} and {2},
M[utgl-f-k] = M[u;éu.k] = O; (k =0, :}:11 +2, - ')'

D. The series {u.} is deterministic.

6. Application to the problem of prediction. In section 1 we have considered
the problem of predicting x4 linearly in terms of z, 1, 22, --- . Now it is
seen that theorem 2 gives the following formula for predicting z,.» with an error
of minimal variance,

pred. Zepx = Uepr + brta¥er + bpypoyeae + - - .

In fact, by theorem 2, A and D, the right-hand member can be calculated with
any prescribed accuracy from a finite set of observations z:, Zi2, -+, ZTt—w,
where N of course depends on the accuracy desired; on the other hand, the
prediction error being

Yerk + biYepna + - + by,
we infer from theorem 2 (B) that this error is of minimal variance,

M|z — pred oo | "] = 1 + | b |* 4 -+ + | b | Dd"

6. Comments. As mentioned in section 2, the above theorem 2 is the analogue
of a theorem on the decomposition of a stationary stochastic process given by the
author previously (see [9], theorem 7). The starting point is then to apply
formula (9), not as above to the same sequence {z.} for varying ¢, but to all
realizations {z;} of the process, holding ¢ fixed. The close connection between
the decomposition in the two approaches is further brought out by the following
theorem.

TaeOREM 3. Given a stochastic process,

”,E(t— 1))£(t))é(t+1))"°,

which is stationary in the sense of (5), let {x:} be an individual realization of this
process. Then {x,} will with probability 1 allow the decomposition of theorem 2.

In fact, according to the ergodic theorem of Birkhoff-Khintchine,* the averages
(2) will exist with probability 1, and so theorem 3 follows from theorem 2. It
should be observed that the coefficients b;, will in general vary from one realiza-
tion to another.

The theory of the decomposition (23) has been carried further in a brilliant
study by A. Kolmogoroff [3]. His analysis deals with the general case of a
stationary sequenceina Hilbertspace. Establishinga decomposition of type (23)

4 See A. Kolmogoroff [2]. His proof refers to averages (2) of the special type where
t, is hold fixed while t; — «. According to the stationarity, however, the average exists,
and is the same, when ¢ is fixed and ¢; — — «, and so the general average (2) will likewise
exist.
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for such sequences Kolmogoroff also shows that the decomposition is uniquely
determined by properties corresponding to A~D. Making use of the powerful
methods of spectral analysis of linear transformations in Hilbert space, Kolmo-
goroff further presents a highly developed theory of the decomposition.

As immediate corollaries of this general theory Kolmogoroff [4] obtains corre-
sponding results for astationary stochastic process {£;} such as (4). Now thanks
to our lemma in section 2, similar theorems hold good for the functional sequence
(1). These results include detailed theorems on the connection between the
decomposition (23) and, on the other hand, the function F (A\) which by. (6)
generates the coefficients 7, . For example, it turns out that {z.} is completely
deterministic if the derivative F’(\) is constant over an interval of positive
measure. An explicit formula for the coefficients b; in terms of the function
F(\) may also be obtained. For proofs and further results, we must refer to
Kolmogoroff’s papers [3]-[4].

The theory of the decomposition (23) has later been generalized in various
directions. V. Zasuhin [11] and J. Doob [1] have shown that the decomposition
applies to multi-dimensional stationary sequences. As shown by the present
author [10], the decomposition may be employed for the analysis of linear equa-
tion systems with an infinite number of unknowns. This device makes use of
the decomposition of non-stationary sequences, a generalization indicated also
by M. Logve [5].
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