ON THE LIMITING DISTRIBUTIONS OF ESTIMATES BASED ON
SAMPLES FROM FINITE UNIVERSES'

By WirLiam G. Mapow
Institute of Statistics, University of North Carolina

1. Summary. The paper shows that under very broad conditions the usnal
theorems concerning the limiting distributions of estimates hold for estimates
based on samples selected from finite universes, at random without replacement.
It may be remarked that under the same conditions, the same conclusions are
true for random sampling from finite universes with replacement, if the universes
are permitted to change within the limitations set by condition W.

2. Introduction. It has long been known that the limiting distribution of
arithmetic means of samples selected at random with replacement from finite
universes, or from infinite universes is normal under very general conditions.
When, however, a sample is selected from a finite universe without replacement,
and the size of the sample as compared with that of the universe is too large for
the universe to be treated as infinite, the proof that the limiting distribution.of
the mean is normal appears to have been given only for the case where the uni-
verse is multinomial.”> In this paper we prove that the limiting distribution of
the mean is normal provided only that as the universe increases in size, the higher
moments do not increase too rapidly as compared with the variance, and théit
for sufficiently large sizes of sample and population the ratio of size of sample to
size of universe is bounded away from 1. Various extensions are given, but these
are almost immediate consequences of the theorem on the limiting distribution
of the mean.

The method used is that of showing that the moments of the standardized mean
tend to those of the normal distribution. In doing this we generalize a théorem
of Wald and Wolfowitz,® by making it applicable to permutations of samples
from finite populations, and by reducing a little the conditions on the coefficients.
The theorem on the mean is then a simple corollary.

We also note that with these proofs on limiting distributions we can make the
corresponding assertions concerning characteristic functions. Although no
applications of this fact are given, it seems likely that some useful results could
be obtained.

3. Preliminary lemmas. In calculating the k-th moments and their limits we

! Presented to the American Mathematical Society at a meeting held in New York City
on April 17, 1948.

2 See F. N. David, “Limiting distributions connected with certain methods of sampling
human populations,”” Stat. Res. Mem., Vol. 2 (1938), pp. 69-90, especially p. 77.

3 A. Wald and J. Wolfowitz, ‘‘Statistical tests based on permutations of the observa-
tions,”’ Annals of Math. Stat., Vol. 5 (1944), pp. 358-372, especially p. 359.
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536 WILLIAM G. MADOW

shall use an infrequently given form of the multinomial expansion and some
properties of symmetric polynomials. In this section we make the necessary
definitions, and present four lemmas embodying the results we shall use.*

A t-partition of a positive integer k consists of ¢ positive integers ey, - -+ , a
such that oy 4+ -+ + a, = k. Two t-partitions ey, -+ , @, and By, - -+, B of
k will be said to be distinct if for at least one value of h we have a, = 8 .

Let (ay , - -+ , a;), written ¢(), be any function of the t-partitions of k. By
Sue(a) we shall mean the summation of ¢(a; , - - - , ;) over all distinct ¢-parti-
tions of k.

By Zup(c) we shall mean the summation of ¢() over all distinct permutations
of oy, -, a.

By Z30(a) we shall mean the summation of ¢(a) over all distinct ¢ partitions
of k satisfying the condition oy > a2 > -+ 2 .

Let ¥(v, -+ -, ») be any function of the variables » , -+, ».. Then by
ZaW(v, -+, ») we shall mean the summation of ¢/(» , - - - , ) over all possible
selections of ¢ integers from 1 to n arranged so that »y > v > -+ > », .

The formula for the multinomial given below is not presented as a new result.
It is given only as a means of referring to the result we need.

Lemma 1. Let &, -« - , & be any quantities or random variables and let k be a
positive integer. Then

ay

k
(6 F 8 = 2 B0 Clpa, T B
where

k
oy = — .
(£ 3R IRIR IR« 7R}

The proof is omitted.
The following lemma will be useful in connection with several of the results of

this section: -
LemMma 2. If o(a) s a function of the t-partitions of k, then

Zup(a) = ZuZup(a).

The verbalization of the lemma is practically its proof.
Let us now define certain symmetric polynomials that we shall use.

Let Say.....a, = ZE7L -+ - £ where the o’s are positive integers and the sum-
mation extends over all possible arrangements v, -+, » of ¢ of the integers
1, ---, N. Hence there will be N® = NW — 1) --- (N — t + 1) terms in
Sayieeiar

LemMa 3. Suppose that ti, - -+ , t, are an h partition of t, that

Oyt 14l = 700 = Oyttt @=1,+,ht=0),

4 The order of sections 3 and 4 is largely a matter of taste; some may prefer to treat sec-
tion 3 as an appendix to section 4 to be referred to when necessary.
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and that

G P Q1 FE e Qg 41
Then, defining
(3.1) Sepear = ZuZebil oo ER

it follows that
Sarrvar = bl 1180, oy

To prove Lemma 3, it is only necessary to note that each term of Sf,!,..,,,,, will
determine 4! - - - t,! equal terms of Sa,,...,q, -

Although the moments that we shall obtain will be functions of S,,,...,s, , the
condition that we shall use on the moments can be interpreted directly only in
terms of S,. Consequently, in order to be able to analyze the implications of
that condition on S,;,...,q, , We state the following lemma:

LemuMa 4. The symmetric polynomial Sa,,...,q, 18 equal to a sum of products of
the form

:1:5'71372 e Sw.

where i, -+ -, i are an h-partition of k, h < t, and each v is a sum of one or more
of the a’s.  Furthermore, if Sy = 0, then h < [k/2] where [k/2] = k/2 if k is even
and [k/2] = (k — 1)/2if k is odd. This follows from the result

(8:2) Sa,*Say, ey = Say,osar + Saytarsag,sary + 00 Sagrerar_giar_y vay -

Proor: It is easy to prove (3.2) by comparing terms. Then the other asser-
tions follow from the repeated use of (3.2) and the resulting fact that each v is a
sum of one or more of the a’s.

¥

4. The limiting distribution. In this section we obtain the generalization of
the theorem of Wald and Wolfowitz to which reference was made above.

Let Uy, U, -+-, Un, -+ be a sequence of universes, the universe Uy con-
taining the elements’ z,y and let the arithmetic mean of the elements of Uy be
denoted by &y . Furthermore, let

1 o \r
MrN = /Jlr(UN) = (N) Z (va - xN) .

Let Cy, Cy, ---, Cu, - - be a sequence of sets of coefficients, the set C, con-
taining the elements c;, and let the arithmetic mean of the elements of C, be
denoted by ¢, . We exclude the possibility that the elements of any C, all vanish,
and hence we can suppose that Z ¢&; = 1. Furthermore, let

7

5 The letter » will assume all integral values from 1 to N. The letter » will assume all
positive integral values. The letter j will assume all integral values from1ton. The letter
t will assume all integral values from 1 to k. The symbol lim will stand for the limit as » or
N or both, as the casc may be, increase without limit, it being understood that lim n/N < 1.
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1 .
l»‘:n = .U:(Cn) = (Z) Z Cin »
1
Since X (cin — @)° > 0, it follows that, if we define 4, = n"%, , then A% < 1.
1

Let n elements be selected at random without replacement from Uy and let
us denote these elements by 7, , the subscript j indicating the order of selection,
i.e., ziy is the i-th element of Uy selected for the sample even though it may be

NN .
The linear function that we shall study is

’ ’
20 = Ciniv + +** + ConZnn y

i.e., the value of z, is determined by multiplying the j-th element selected for the
sample by c;, and summing for j. Then, since Ex:i, = &y, we have

EZ,. = NINC, .

N
ory = (N—_—i) 3% <1 - :—nl\_r A%.) .

Furthermore,

E(xin — &) = pan,
and, if 7 > 7,
E@ln — 50) @ — By) = —pon (___1_>.
N -1
From the definition of variance we have

n
Ugn = E(z" - Ezﬂ)2 = "Zl Cin c)'n E(x:n - «%N)(x;n - .'Z_JN),

i j=

and making the indicated substitutions the result follows from a few simple

manipulations.
If we define %, to be the arithmetic mean of z{y , - - - , Zny, then it follows that

vV/n ¢;n = 1 and, as is well known,

E%, =z

o2 =(N“">/f2:f
- N—-1/n"

Hence, if we can find the limiting distribution of
7, = 2, — Bz, ’

Ozn

thea the limiting distribution of (8 — Z)/oz will be a special case.
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We shall need to place some sort of limitation on the sequences Uy and C, if
we are to obtain theorems on limiting distributions of statistics based on them.

The condition W that we shall use is satisfied by a slightly larger class of se-
quences Uy and C, than that of Wald and Wolfowitz because it does not rule out
the possibility that all the elements of C, should be equal. It should be noted,
however, that for their purposes this extension of the class of sequences satisfying
Ux and C, is vacuous since they required n = N, so that in their case if all the
elements of (', were equal, say k/N, we would have zy = k &x no matter in what
order the elements of Uy were selected for the sample.

ConpirioNn W. The sequence Uy and C, will satisfy the condition W if

wev = uin M(N),
pr = 0N (n),
nd%
N
for sufficiently large n and N, where a finite value A exists such that for all »

sup | A(N) | <A,

<1 —g

and

sup | Ar(n) | <A,
and ¢ > 0.

(Note that if W is satisfied for all even values of r then W is also satisfied for all
odd values of 7 since p,4op, > wri1)-

A general theorem on moments is the following:

TueoreM 1. Let Sa.,,...,«, and S;l,...a, be defined in terms of xy — Iy
instead of £, and let T, .a, be the same function of the c;, that S;l,“.,a, 3 of the
2w — in. Furthermore, let E. = EZY . Then

0 B = T8 Chy, S T

N(l)_o_k
Proor: From the definition of Z, and Lemma 1, it follows that
Ulz:,, E, = ZtZuCilma‘ Zm CrluCtn E(-’C:lzv — Ty)™ - (x:,x — Ix)™.

Since we are selecting at random without replacement it follows that
NU)E(-’U:,N — Ty) e (2U:,N — )" = Sap vy -
If we now use Lemma 2 to replace =, by =322 , we then obtain
alzcn NYE, = Zt: Z;“ C’;l...a, Saq-veay Zzt Z4n Cln G

since both C%, ... o, and S, ... ., are invariant under permutations of oy, - - -,
a; . Then from (3.1) and the definition of T.',l,..._.,, , it follows that (4.1) is
proved.
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Our fundamental theorem is:
TaEOREM 2. If the sequences Uy and C, satisfy the condition W, then
lim Bz = 0,
and

(2)!

lim Egi = @7' ,

so0 that, for any a,

1 a
lim P{Z, < a} = _\7_2_f ¢~ g
T J—o

Proor: We wish to show that lim E; exists and has the values given above
First consider the parts of the typical term of E) that depend on n and N, i.e.,
the expression -

B - Sayreoar Teyseomras B
N(t) “Izc)/v2(N/N _ 1)k/2 (1 _ nAi/N)k/‘z .

Since lim E;, will be the sum of the limits of a finite number of these terms, let
us first determine under what conditions B will tend to zero as n and N become
infinite.

From Lemma 4 it follows that

Sﬂln"'.at =2 % S‘nS‘Yz e S‘n. )

wherey; + -+ 4+ v» = a1+ - - - + a; and each of the y’s is the sum of one or more
of the a’s. From the definition of S,,,...,«, in terms of z,» — Zy it follows that
S; = 0. Hence the minimum value of all v’s in any non-vanishing term of the
summation is 2. Consequently we can say that for all non-vanishing terms A <
[k/2] and h < t. TFinally if condition W is satisfied then

Sy, co e Sy, = N'ubEN(N)
where
sup | M(N) | < N
Similarly
Toprioar = 2 & Ty Ty,

where it may be that T 5 0 so that we cannot require ¢ < [k/2] for the term
Ty, -+ Ty, to be non-vanishing. We still have, however, from Lemma 4 that
g <t

If condition W is satisfied, then

T‘n e T’Ya = ny_klle;(n);
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where
sup | A, (n) | < A%
Hence, from Lemma 4, the definitions of ;v and u}, and condition W it follows
that B is a sum (the number of terms does not depend on n or N) of terms like
N#qo=ki2 X\(N)N (n) B
N(t)(N/N _ 1)7:/2 (1 _ nAi/N)k/‘Z)

D =

where
h<I[k/2, A<t g<t
and
sup | A(NV) | < o,
and sup | N'(n) | < .

Since 2 < ¢, it follows that if ¢ < k/2 then lim D = 0. Hence, a possibly non-
vanishing term must have ¢ > k/2 and hence ¢t > k/2 because { > ¢g. Further-
more, ! > g+ h — k/2,sinceh — k/2 < 0andt=g. Hencet —h > g — k/2.
Now, we can write

na—klz -
D = -W' A(N, n),

where
sup [A@, n) | < =,

since nA2/N < 1 — e for sufficiently large n and N.
Hence
limD = 0,

unless, perhaps, wheng — k/2 =t — h,ie., h — V‘k/2 =t—g¢g. Sinceh —k/2 <
Oandt — g > 0, 3t follows that we must have h = k/2 and t = g for lim D to be
possibly not zero.
If k is odd, then 2 < (k — 1)/2 and hence
lim E2j+1 = 0,
since all terms obtained by expanding it as above will tend to zero.
If k is even, say k = 27, and lim D is possibly non-vanishing, then » must equal

j and we must have y; = --- = y; = 2. Consequently, from Lemma 4, the
only possibly non-vanishing terms of E.; are those arising from the polynomials
Sayr-as s T;,,---,a, withao, = -+ = @ = 2,and o471 = --+ = a; = 1, so that
2s+t—s=2ort=2—s,8=0,1,---,5. Forsuchvaluesof ay, -+, a
we have

CF ey = D!

28



542 WILLIAM G. MADOW

Furthermore, as shown below, in developing S.,....,«, by means of Lemma 4 the
coefficient of 87 is
e (2] — 25)!
(4.2) (—1) e = 8)"
DemonsTRATION OF (4.2): If s = 7, then it follows from Lemma 4 that the
coefficient of S7 is 1. If s < 7, we use Lemma 4, and noting that S; = 0, we

obtain

(43) S"‘l-"'»“l = _S¢1+ana2r"-“t_1 - e _San"',ﬂt_z-at—l+ac )
where, since @, = 1, we have oy + s = aa + @t = --- =1, 0, + ¢ = 3, and
a1 + =+ = a1+ oo = 2. Consequently of the { — 1 terms of the

above evaluation of S, ,...,q, , exactly s will have &’s > 2and ¢t — s — 1 will be
of the same form as S,,,...,«, except that instead of s of the a’s being 2 we have
8 4+ 1 of the o’s equal 2. For each such s we repeat the process obtaining
Saporvar = (=D —s — 1)t —5—38) -+~ 31 Sy,
P
-+ terms which have h < j.

Consequently (4.2) provides the coefficient of 8§ in Say,-a, - Since the other
terms of Sq,,...,«, have b < j, they lead to terms of Ej, that vanish in the limit.

Furthermore, by Lemma 3, Ta;,....c; = Ty, a;8!(t — 8)! and the only term
of Te,,...,a, for which g = ¢is

Tth—s —_ n(t—s)/ZA 'tL-s‘

The other terms of T,,...,q«, Will lead to terms of E,; that vanish in the limit since
g < t. Consequently, eliminating terms known to tend to zero as n and N be-
come infinite, we see that Ey; — f(n, N) tends to zero as n and N become infinite,

where
i (2)! . (2 — 28)! NPn/™" AL™
L N) =2 (= ) : -
f(n, N) Z:o 2 =D 275127 — 25)IN¥ (1 — ndi/N)

Now as n and N become infinite with n < N, we see that

lim f(n, N) = lim (_2-7-)- Z‘,( D™ i G = )i (nA%/NY™'/(1 — nA%/NY
_ (_2_1)_!
2151’
le.,
. 2j)!
lim Ey; = %'

To complete the proof it is only necessary to note that the normal distribution is
completely determined by its moments.®

¢ See for example, M. G. Kendall, The Advanced Theory of Statistics, Vol. I, London,
Charles Griffin and Company, page 110.
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Since Theorem 2 is a generalization of the Theorem of Wald and Wolfowitz,
it is possible to generalize slightly all the applications they make of their theorem.
The statements of these generalizations are omitted.

The application of Theorem 2 that led to this paper is the following: Suppose
that ¢;, = n~">. Then the sequence C, satisfies W and A, = 1. Consequently
we have proved

COROLLARY 1. If the sequence Uy satisfies the condition W and if %, is the arith-
metic mean of a sample of n elements selected at random without replacement from
Ux , then, for all a,

: _n_l/fii’" — fﬁ _ (1 R
fim P {u;#(l —m/n)t < “} - (ZF)L» ¢
provided that € > 0 exists such that n/N < 1 — ¢, if n and N are sufficiently large.
Now the sequence of Uy will certainly satisfy W if Uy has the same moments
for all values of N, or if the moments of Uy tend to fixed values as N increases,
or if the universe Uy is a random sample of a universe having these properties.
Consequently Theorem 1 and its corollaries will be valid for many applications,
among them being the case studied by F. N. David’ when Uy has the same multi-
nomial distribution for each value of N.
The condition W is immediately satisfied for large classes of changing uni-
verses. For example, if the elements of all Uy are uniformly bounded and

lim pox 5% 0,

then the condition W is satisfied. As an illustration, consider the case where
Uy contains Npy elements having the value one and N(1 — py) elements having
the value zero. Then

uew = pa(l — px),
and

1 o ¥
pow = = Z_; 1 —p) + 2 (=,

r=Np,+
= pv(1 — py)" + (=11 — px)py.

Hence
poy (1= p)™ + (—=1) P
“;‘;'2 p;,m—l (1 _ pN)rIZ—l 5
so that condition W will be satisfied if € > 0 exists such that e < pyv < 1 — ¢
for all sufficiently large N.
Hence the limiting distribution of Z, will be normal no matter how the propor-
tions py change provided only that the universe Uxy does not come to consist

essentially only of zeros or only of ones.

7 Op. cit.
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Various multivariate extensions of Theorem 2 are immediate. For example:

TrEOREM 3. Suppose that the elements of Uy are vectors of two components,’
(x,v1, T.w2), and that the condition W is satisfied by the sequences C, , Un, and
Uwz where Uyy, , b = 1, 2, contains the elements x ,xy, .

} : ’
CJ":E ink

Znh

and let
2o — Ez
Znh — nh nh ,
Zah

. !’ 4
where the random variables x ;.. are defined as were T .

Let

oy = Ev(xvm - il-?m)(xmz - iN?)
(I-“ZNI . Mzuz) 12 ?

and suppose that lim py exists and is equal to p where p > —1 + e. Then, the
limiting distribution of Z., and Z.» is bivariate normal with means 0, variances 1,

and correlation coeffictent p.

Proor: To prove Theorem 3 we shall show that any linear function
tZn + tZyqe will be normally distributed in the limit if ¢ and ¢ are not both
zero. It will then follow? that the theorem is true.

If we define Uy to be the sequence whose elements are

t(z,ye — Tw) t(T,ve — Taa)

x‘vN = 1/2 + 1/2 "
MH2N1 M2N2

then the arithmetic mean of Uy is zero. Let

a Al
en = E CiniN ,
i

and let
7 = 5, — E3,

N
O:n

Then, it is readily verified that
g o wlm At bl

n
OtyZny+toZns

8 The generalization holds for any finite number of components but, to simplfy the dis-
cussion, is stated for two components only. The method used is due to H. Cramér, Random
Variables and Probability Distributions, Cambridge University Press, London, 1937, p. 105.

¢ H. Cramér, Random Variables and Probability Distributions, Cambridge University
Press, London, 1937, p. 105.
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Consequently, to prove that t:Z, + t:Z,» has a normal limiting distribution, we
need to verify that the sequence U satisfies the condition W if Uy, and Uy, do.
The moments of Uy are

"'rN = _Exvh'y

so that
fiov = i + t; + 2titpw ,

where py has the usual form of the correlation coefficient. Furthermore, using
the binomial expansion, we have

tl tz Ma,r—aN

a r r—a.

(44) MrN = Z C Ta/2 (r—a)/2 ?
a=0 M2N1 MaN2

where

1 —
Ma,r—aN = N Z (xym - ”Um) (xmz - xnz) “
y

Then, by the Cauchy-Schwarz inequality we have
r—a I

IZ (@1 — Ev) @z — Tae)

= [Z @1 — En)™ - Z (w2 — Iim)zr—za]t

so that
1/2
I Ma,r—aN I < ﬂza N1 ﬂzr—za N2,
and using condition W for Uy, and Uy, , we have

M2a,N1 S M;m )\(N ), M2r—2aN?2 ﬂzzvz A(N )

Hence, substituting in (4.4) we see that
sup | pv | < oo,

Hence the sequence Uy satisfies the condition W for all #; and ¢, , and Theorem
3 is proved.

From Theorem 3, it then follows that the theorems on the limiting distribu-
tions of moments, product moments and functions of moments' are valid for
sampling from finite universes, at random without replacement.

10 The most important of these theorems are given in H. Cramér, Mathematical Methods
of Statistics, Princeton University Press, Princeton, 1940, sections 28.2-28.4, pp. 364-367.



