ON THE RANGE-MIDRANGE TEST AND SOME TESTS WITH BOUNDED
SIGNIFICANCE LEVELS!

By Joan E. WaLsu
The RAND Corporation

1. Summary. This paper is divided into two parts. The significance tests
investigated in Part I concern the population mean and are based on the quantity

[(sample midrange)-(hypothetical mean)]/(sample range).

The case in which the observations are a sample from a normal population is
considered in detail. The tests investigated are summarized in Table 1. These
tests are found to be very efficient for small samples (see Table 4, power efficiency
is defined in section 3). An investigation of several extremely non-normal
populations using the values of Da obtained for normality indicates that the
significance level of the range-midrange test is not very sensitive to the require-
ment of normality for small samples (see Table 6). Also the tests of Table 1
can be applied without computation through the use of an easily constructed
graph (see section 4). These properties suggest that the range-midrange test is
preferable to the Student ¢-test and the analogue of the Student ¢-test using the
sample range (see [1] and [2]) whenever the sample size is sufficiently small.

Use of the range-midrange test for the case of normality was proposed by E. S.
Pearson in [3], where properties of the test were experimentally investigated
for the normal and certain non-normal populations.

In Part II several significance tests for the mean are developed which have a
specified significance level for the case of a sample from a normal population
but whose significance level is bounded near the specified value under very
general conditions, one of which is that the observations are from continuous
symmetrical populations. Some of these tests are range-midrange tests. Table
2 contains a summary of the tests and their properties (z; = ¢th largest observa-
tion, ¢ = 1, -+, n; conditions (D) are given in section 7).

PART I. THE RANGE-MIDRANGE TEST

2. Introduction. In 1929 E. S. Pearson proposed using the range-midrange
test for the case of a sample from a normal population (see [3]) and experi-
mentally investigated some of its properties for sample sizes of 5 and 10 and
significance levels of 29 and 109, (symmetrical tests). Using the constants
(corresponding to the D, in this paper) determined for the case of normality,

1 This paper was presented to a joint meeting of the Institute of Mathematical Statistics
and the American Mathematical Society at New Haven, Conn. in September, 1947. The
results presented in this paper were obtained in the course of research conducted under the
sponsorship of the Office of Naval Research. This research was performed while the
author was at Princeton University.
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significance level and power function properties of these four tests were experi-
mentally investigated for several non-normal populations. The results of this
empirical investigation indicated that the range-midrange test is very efficient
for normality and not very sensitive to the assumption of normality if the sample
size is sufficiently small.

This paper presents an analytical investigation of properties of the range-
midrange test for n = 2, 3, --., 10 and a wide range of significance levels.
The results of this investigation confirm the contention that the range-midrange
test is very efficient for normality and small samples; also an analytical investiga-
tion of how the significance level changes for the case of certain extremely
non-normal populations furnishes results which agree with the contention
that the range-midrange test is not very sensitive to the requirement of normality
for sufficiently small samples.

In most cases the results presented in this paper are not directly comparable
with those obtained by Pearson. It was possible, however, to obtain values of
Da, (@ = 5%, 1%; n = 5, 10), from the results presented in [3]; these values
were found to be in close agreement with the corresponding values of Table 5.

3. Efficiency of range-midrange. The purpose of this section is to use the
relations derived in section 6 to determine the power efficiencies of tests A, B
and C (see Table 1) fora = 19,5%andn = 2, --- ,10. To do this the method
of defining power efficiency given in [4] and [5] will be used. As shown in [5],
it is sufficient to consider only test 4 ; for any fixed n and «, tests 4, B and C all
have the same power efficiency (note that the significance level of test C is 2a).

For a normal population (unknown variance) the most powerful test of the
one-sided alternative u < wo is the appropriate Student ¢-test. The procedure
used in determining the power efficiency of test A consists in first computing the
power function of test A for the given values of n and «; then the sample size
of the corresponding Student i-test at this significance level is varied until the
power function of the {-test is approximately equal to that of test A. The size
sample (not necessarily integral) thus obtained for the ¢-test divided by n is
called the power efficiency of test A for the given values of n and «. Intuitively
the power efficiency of a test measures the percentage of the total available
information per observation which is being utilized by that test.

Table 3 contains values of the power function for test A. These values were
computed from equation (3) of section 6 by approximate integration.

The corresponding values of the power function for the Student t-test were
found by using the normal approximation given in [6]. This approximation
was used for fractional degrees of freedom. The sample sizes considered as
well as the resulting power function values are listed in Table 3. A comparison
of the power function values for the two types of tests furnishes the approximate
power efficiencies listed in Table 3.

For n = 2, test A is itself a Student ¢-test. The power efficiency is therefore
1009, for that sample size. This combined with Table 3 furnishes power
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efficiencies at the 19, level forn = 2, 6, 8, 10 and at the 5%, level for n = 2, 6, 10.
The approximate power efficiencies given in Table 4 for other values of n were
obtained from these values by graphical interpolation.

Table 4 shows that the power efficiency for o = 19, is very good for n < 8,
while for @ = 5%, the efficiency is good for n < 6.

TABLE 1
Summary of range-midrange tests
Tests Signifi-
Definitions cance
Accept If Level
Test based on sample of size n, 2<n< (4)
10), from an arbitrary normal popula-
tion.
.................... u<po D<—-D, a
1 = smallest sample value.
z, = greatest sample value.
= the mean of the normal population. (B)
po = given hypothetical mean value to be
tested.
.................... B> 1o D>D, a
D= (sample midrange)-(hypothetical mean)
(sample range)
= [(xs + 21)/2 — pol/(@s — 21).
.................... ©
D, = constant depending on n and a.
Values of @ versus D, for 2<n<10 and eI |D|> D, 2
a = 59, 2.5%, 1%, 0.5%, are given in
Table 5.

4. Construction of graph. In most problems to which a test of the type
developed in this paper would be applied, the values of the sample can be con-
sidered to have practical lower and upper limits, say a and b. For example, in
many situations zero is a lower limit for the sample values. From a practical
viewpoint these limits on the sample values do not contradict the assumption
that the population is normal, since the area under that part of the normal
distribution which lies outside the interval (a, b) can be considered negligible.
Thus, since Pr(u/s* § w) = Pr(u S v"w), test A can be restated in the form

Accept p < uo if the sample point (x1, x.) falls in the region (A) of the z1, %
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TABLE 3

Power function values for test A

261

T’i‘ype Sample Approx. | Significance Approximate Values of Power Function
est Size Efficiency Level 5=3|s=1|s=13|s=2|0=2
%
¢ 5.4 .05 .244 | .607 | .886 | .969
A 6 90 .05 .259 | .599 | .868 | .967
t 7.5 .05 .333 | .783 | .971
A 10 75 .05 .351 | .779 | .962
¢ 5.88 .01 .071 | .248 | .551 | .820 | .957
4 6 98 .01 .077 | .271 | .568 | .809 | .935
¢ 7.2 .01 .091 | .371 | .749 | .949
A 8 90 .01 .104 | .389 | .728 | .923
t 8 .01 .108 | .453 | .832 | .976
4 10 80 .01 .124 | 462 | .814 | .963
TABLE 4
Power efficiencies of tests A, B and C for @ = 6%, 19, and 2<n<10
n
2 3 4 5 6 7 8 9 ’ 10
.01 | 1009 | 99.7%| 99.4%]| 99% | 98% | 95% | 90% | 85% | 80%
.05 | 1009, | 98.5%| 96%, | 93.5%| 90% | 86.5%) 82.5%| 78.5% 75%
TABLE 5
Approximate values of D, for a = 6%, 2.6%, 1%, 0.6% and 2<n<10
n
2 l 3 4 5 l 6 7 8 9 10
0.59% | 31.83 | 3.02* | 1.37* | .85* | .66 | .55* | .475 | .425 | .39*
1% 15.91 | 2.11* | 1.04* | .71 .56% | 475 | .42*% | .38 | .35*
2.59% | 6.35|1.30 .74 .52 | .43 | .375 | .33 | .30 | .27
5% 3.16 | .90* .555% | .42 | .35% | .30 | .26 | .24 | .22*

* These values of D, were verified directly by substitution and integration.
The remaining values of D, for 3 = n = 10 were obtained from these and other
values of D,, (e == .005, .01, .025, .05), by graphical interpolation.
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plane defined by
(1/2 + Do)xn + (1/2 — D)2 < o, [ a < 21,2, X b
TABLE 6
Effect of non-normality on the significance level of the range-midrange test
Probability Density Significance Level
" Function Test A Test B Test C
Normal .05 | .025 | .01 | .005 | .05|.025| .01 | .005 [ .10 .05 | .02 | .01

3 1if 0<2<L1 .064].039 |.018 |.010 (.064].039/.018 [.010 {.128 ~(—);g .036 E
T 0 otherwise .053(.033 |.017 [.0096|.053|.033|.017 |.0096/|.106|.066|.034 |.0192
_5— Mean = } .043/.029 {.015 [.0094|.043[.029/.015 |.0094/|.086/.058/.030 |.0188

3 | telsl, —o<zr<o |[.036.017 |.0063|.0031|.036(.017(.0063|.0031|.072|.034|.0126|.0062
_4—‘ .043(.016 |.0055/.0024|.043}.016|.0055|.0024.086.032(.0101|.0048
——| Mean = 0

5 .095|.026 |.0059|.0027|.095(.026|.0059|.0027|.190(.052|.0118|.0054

3 | 3x2if —1222>1 .119{.104 |.073 {.050 |.119|.104|.073 |.050 |.238(.208(.146 |.100
_4— 0 otherwise .062].061 [.055 |.045 |.062|.061[.055 |.045 |.124]|.122(.110 |.090
T Mean = 0 .031{.031 |.031 |.029 |.031[.031(.031 |.029 |.062|.062|.062 |.058

3 |e*if 0<z<w» .014(.0067|.0025(.0012|.158|.108/.059 |.035 |.172(.115(.062 |.036
—4_ 0 otherwise .013.0048|.0016/.0007|.144(.104(.065 |.042 |.157|.109|.067 |.043
—5_ Mean = 1 .017/.0055|.0013|.0006|.122(.096(.061 |.045 |.139/.102|.062 |.046

3 | 2zif 0<2<1 .035(.019 |.0075|.0038|.096 .661 .030 |.017 |.131|.080|.038 |.021
T 0 otherwise .031].016 {.0065|.0031|.083(.055/.031 |.018 |.114(.071|.038 |.021
——5— Mean = % .0281.015 |.0057|.0031|.068|.050{.028 |.019 |.096|.065|.032 |.020

3 | 322if 0<zL1 .027.014 |.0053|.0026|.112.072|.037 |.021 {.139|.086(.042 |.024
_4—— 0 otherwise .024].011 |.0043|.0019|.099|.067(.039 |.024 |.123|.078|.043 |.026
T Mean = % ;023 .012 {.0037|.0019|.082(.061|.036 |.025 |.105|.073|.040 |.027

Likewise test B can be restated as
Accept u > po 3f (21, xn) falls in the region (B) defined by

(1/2 - Da)xn + (1/2 + Da)xl >

Mo o

Ty = 1,

a < x,%, <D
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Test C now becomes

Accept p = po tf (%1, xa) falls in either of the regions (A) or (B).

Figure 1 (i) contains a schematic diagram of the regions (4) and (B). Test 4
can be applied by constructing a graph of the region (4) and giving the instruc-
tions to accept p < o if (21, 2,) fallsin (4). Similarly for test B and region (B).
Test C is applied by constructing a graph of both (A) and (B) and accepting
B # o if (21, x,) falls in either (4) or (B).

Frequently it is desirable to simultaneously consider more than one significance
level. This can be accomplished in the manner indicated by Figure 1(ii).

6. Effect of non-normality on significance level. It has been shown that the
range-midrange test compares very favorably with the Student ¢-test for suffi-

(a,b) (b,b) 5% 25% /% 05%
Xn
5%
257
17,
0.5%
@ a) . ..
(1) (i)

Fia. 1. ScaEmATIC D1AGRAMS OF REGIONS USED IN CONSTRUCTION OF GRAPHS

ciently small samples and normality. In practice, however, it may happen that
normality is assumed for cases in which the population is not even approximately
normal. Although this represents an error in judgment on the part of the
person applying the test, such situations will undoubtedly occur if the range-
midrange test is used very frequently. The purpose of this section is to
investigate the effect of non-normality on the significance level of the range-
midrange test when the values of D, based on normality are used. The cor-
responding effect of these non-normal populations on the significance level of
the t-test was not considered because of computational difficulties; however the
effect of some other non-normal populations on the significance level of the
t-test was experimentally investigated by Pearson in [3]. The results of this
empirical investigation and of later investigations shows that the significance
level of the ¢-test is not very sensitive to the requirement of normality for small
samples.

Six populations were chosen for investigation. Three of these populations are



264 JOHN E. WALSH

symmetrical while the remaining three are strongly asymmetrical. These
particular populations were considered because their probability density func-
tions have a wide variety of different shapes; also because the significance level
of the range-midrange test can be computed in closed form for these populations.

The populations investigated are defined by their probability density functions.
Table 6 contains a list of the probability density functions considered along with
the resulting significance levels for the range-midrange test. The cases in-
vestigated are n = 3, 4, 5 and « = 5%, 2.5%, 1%, 0.59%. Larger values of
n were not used because of computational difficulties. The situation of n = 2
was not considered because the ¢-test and the range-lﬁidrange test are identical
for this case. The significance levels of Table 6 were computed by making
direct application of (1) and (2) of section 6.

6. Significance level and power function derivations. The purpose of this
section is to present derivations of the significance level and power function
expressions which were used in the preceding sections. First a general probabil-
ity expression will be evaluated. Direct applications of the results obtained
for this expression yield the required significance level and power function
relations.

Let z; and z, be the smallest and largest values, respectively, of a sample of
size n drawn from a population with probability density function f(z). The
non-zero probability range of this population is v < 2 < 8. Also let three
constants ¢;, ¢, , ¢, (a1 + ¢. = 1), be given and consider the value of

Pr (g + cntn < @); where M(z) = /_ f(y) dy.

Using direct methods it is found that the value of this expression is given by

[M ()] ife, =0
0 fo<a<lLaolvy
w () o [ un - (22 s av
Cn co C1
if 0<ea<l, o > .
Q 1-[ - M) ifop =1
0 if g > 1,¢0 < min [y, cry + c.8.

8 . n—1
1—n f [M(V) - M (‘i‘!—f-—vﬂ V) v
(co—¢cat) en C1

_M(c‘*';io fa>1 ay+ef<clq

B8 - n—1
1 - nf [M(V) - M(c%l’ﬂ WAV if a>1, >
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The value of Pr(ciz1 + c.x. < c) for ¢; < 0 can be obtained from the above
results for ¢; > 1. It is easily shown that
2) Priciey + caxn <)) =1 — Pr(c;'y. - cf.y,. < ¢g),
where
7 !

’
C1 = Cy, Ch = (1, Co = —Co,

and y1 , y» are the smallest and largest values, respectively, of a sample of size n
drawn from a population with probability function g(y) = f(—y). Thus if
a <0,¢f =c¢, > 1and obv1ous modifications of the results for ¢; > 1 will
furnish the value of Pr(ciys + crny» < co).

The above general results were used in section 5 to investigate the effect of
non-normality on the significance level of the range-midrange test.

Now consider the case in which the n sample values are drawn from a normal
population with mean u and variance ¢>. Then, for test A,

Powgr Function = Pr{(1/2 — Da)a; + (1/2 + Do)zs < mo}
= Pr{(1/2 — DJz; + (1/2 + DJ)z, < 8},
where
= (& — w)/o, 2= (Xa — w)/o, &= (o — u)/o.
Using the above results with

fle) = \/127 e M@ = N@) = ‘\/177 L e d,

it is found that the power function for test 4 is

1-nf [N(V) - N{" = 1(/12/2_*'1)? 2 V}]Hf(V) v i D. < 1/2;

@) (IN@I® if Da.=1/2;

n [: [N(V) - N{a - 1(/12/2_‘*1)?“)"}]"_1 fV) av, i D.> 1/2.

The value of D, (for given n) corresponding to a specified significance level a
for test A is obtained by solving the equation

@ a = P,(0),

where P 4(9) is the power function for test A. From symmetry and the fact that
test C is a combination of tests A and B, test B has significance level « and test
C significance level 2« for this value of D, .

For n = 2, test A becomes a Student ¢-test with one degree of freedom if D,
is replaced by ta/2. The relation D, = t./2 gives an easily applied method of
computing D, for this case.

Approximate values of D, for & = 5%, 2.5%, 19, 0.5, are contained in




266 JOHN E. WALSH

Table 5 for 2 < n < 10. For 3 < n < 10, these values were obtained from (3)
and (4) by approximate integration and interpolation. For n = 2, the relation
between D, and t. was used.

PART II. SOME TESTS WITH BOUNDED SIGNIFICANCE LEVELS

7. Introduction. In this part some significance tests (for the mean) are
derived which are based on the assumption of a sample from a normal population.
These tests have the property that the significance level is bounded near the
value for normality under very general conditions. These conditions are

(b) Each observation comes from a continuous symmetrical population

(a) The observations used for a test are independent.
(D)
with mean .

It is to be emphasized that no two observations are necessarily drawn from
the same population.

The bounded significance level tests developed are summarized in Table 2.
These tests can be used to supplement the tests presented in [5] for n < 9, where
the tests of [5] do not furnish a very wide variety of suitable significance levels.

8. Outline of derivations. Let us consider the range-midrange test for the
more general situation in which the set of independent observations used are from
arbitrary but fixed populations satisfying conditions (D). Let D, be redefined
so that the resulting test .1 has significance level @. Then it is easily seen that
D. is a monotone decreasing function «. Thus the significance level of the
modified test 4 will always be less than or equal to (1/2)" if D, > 1/2. The
significance level bounds for the testsn = 4, = 5%;n = 5, a = 2.5%;n = 6,
a=1%;n =7, a = 0.59% of Table 2 were obtained from this relation and
obvious significance level relations among tests A, B and C.

The significance levels (for normality) for the tests n = 5, a = 5%; n = 6,
a=25%;n="7a=1%;n = 8, a = 0.59%, were obtained by approximate
integration of the expression derived for Pr[(1/2 + ¢)xn + (1/2 — ¢)%p1 < ],
(0 < ¢ < 1/2), for several values of ¢ and then graphical interpolation (here «
is the one-sided test significance level). The significance level bounds were
determined from

(1/2)" = Pr(z. < p) < Pr{(1/2 + c)an + (1/2 = €}ty < 4]
< Pr{(1/2)(zn + ) < ml = (1/2)"7

The significance levels for the tests n = 8, @ = 1%;n = 9, a = 0.59, were
obtained by considering the relations

Pr{max [xn.-: y (xn + xn—-l)/2] < ”} = (1 + 7’)(1/2)"’ (i = 0} la 2) 3):
and applying linear interpolation to find a value ¢, (0 < ¢ < 1/2), such that
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Pr{max [z,1, 0.52, + ctns + (1/2 — ¢)Zna] < u} has the desired value.
The significance level bounds were found from

Pr{(1/2)(®s + Zaa) < &} < Pr{max[z,_;, 0.5z, + cToz + G — )T0a] < u}
< Pr{imax[Za.—1, (1/2)(@ + Tu2)] < u}.

The derivation of the power efficiencies listed in Table 2 will not be considered
here. Detailed derivations can be found in [7].
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