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satisfy condition (1) with probability 1, provided Y has positive variance and
a finite absolute moment of order 3. Thus condition (1) constitutes a considerable
improvement over condition W.
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ON SUMS OF SYMMETRICALLY TRUNCATED NORMAL RANDOM
VARIABLES

By Z. W. BirnBaum anp F. C. ANDREWS'
University of Washington, Seattle
1. Introduction. Let X, be the random variable with the probability density
Ce™"”  for|z|<a

1.1 (@) =
. o) {O_ for |z | > a,

1
obtained from the normal probability density Vo ¢ by symmetrical trunca-

tion at the “terminus” |z | = a, and let S{™ be the sum of 7 independent sample-
values of X, . We consider the following problem: An integer m > 2 and the real
numbers A > 0, e > 0 are given; how does one have to choose the terminus a
so that the probability of | S{™ | > A is equal to ¢,

(1.2) PUS™M | > A) = e

" This problem arises for example when single components of a product are

manufactured under statistical quality control, so that each component has the
1
length Z = k + X where X has the probability density “\/*2;1; ¢ **, and the final

product consists of m components so that its total length S is the sum of the
lengths of the components. We wish to have probability 1 — e that S differs
from mk by not more than a given A. To achieve this we decide to reject each
single component for which | Z — k| = | X | > a; how do we determine a?

The exact solution of this problem would require laborious computations.”
In the present paper methods are given for obtaining approximate values of a
which are ‘“‘safe”, that is such that

(1.3) PS8 |2 4)< e

1 Research done under the sponsorship of the Office of Naval Research.

2 A similar problem has been studied by V. J. Francis [2] for one-sided truncation; he
actually had the exact probabilities for the solution of his problem computed and tabulated
for m = 2, 4.
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In deriving these safe values, use will be made of theorems on random variables
with comparable peakedness, for which the reader is referred to a previous
paper [1].

2. The safe value q; . For fixed a > 0, we consider the normal random variable
Y, with expectation 0 and with probability density g.(Y,) such that g.(0) = f,(0).
It is easily seen that Y, has the standard deviation

. 1 +e —13/2
2.1) o = 72—;‘[ e dt,

and that ga(¢) < fa(®) for | £ | < a, ga(§) > 0 = fu(¢) for | £| > a. Hence, applying
Theorem 1 in [1], we conclude that

(2.2) P(S8M™| > 4) L —\/2?7 e dt,

/;A/m/'ﬁ)

If m, A, and e are given, we determine £, from tables of the normal probability
2 © A

integral so that \72—-; j; . e dt = ¢ set o, = m in (2.1), and solve the

equation

A__ L 7 e
@3 e va Lo

for a using again tables of the normal probability integral. In view of (2.2) this
solution satisfies (1.3) and hence is safe; it will be denoted by a; .

3. The safe value. a;. A direct application of Theorem 2 in [1] yields the
inequality

P( 8™ | > 4)

(3.1) m m
1 Z (m\f A . A
< _1 7 . —_— + m — 2 = m —
= 2™Mm! ymtalay<ism (=1 (.7 )(a ]) " (a)

for 0 < A < ma. Hence by equating h,(A4/a) to € and solving for a, we obtain a
safe value which will be denoted by a. . It is of interest to note that (3.1) ¢s true
not only for f,(z) defined by (1.1) i.e. truncated normal, but for any probability
density f.(x) which is symmetrical and unimodal, since these are the only assump-
tions needed for Theorem 2 in [1].

4. Solution for large m. The random variable X, has the variance

2¢"(a)

(4.1) (X =1+ N OES

where

¢(x) = '712_1; /_‘w R gy,
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Hence, according to the central limit theorem, we have the approximate equality

]

(m) _ 2 f —s2/2
(4.2) P(| 8™ | > 4) = Vor Juteaovm et dt
for m sufficiently large.

It can be reasonably expected that the cumulative distribution of S{™ differs
from its limiting normal probability integral by less than the cumulative distri-
bution of the sum U™ of m independent uniform variables in (—a, +a) differs
from its limiting normal probability integral. Already for m = 4 the cumulative
distribution of U{™ differs from the corresponding normal cumulative by less
than .0075. Equally good or better approximation may, therefore, be expected
for the distribution of S{™, so that the error in the approximate equality (4.2)
between the two-tail probabilities should be less than .015 for m = 4, and still
less for m > 4.

Equating the right-hand term of (4.2) to e and solving for ¢°(X,), we obtain

oy L 2@ 1 (A)2

T =t w1 m e

an equation which can be solved for a with the aid of tables of ¢(x) and ¢’/ (x).
We denote this value of a by «; .

b. Use of the different solutions in practice. From the foregoing it appears
that the following procedure may be followed in solving our problem in any
definite case:

If m is large, o is very close to the exact solution of (1.3) and may be used
safely.

If m is not large but m > 5, it is conjectured that ey is such that the left-hand
term in (1.3), for @ = ay, differs from ¢ by less than 0.015.

If m < 4, the larger of a; and a; should be used. Table I contains the A for
which a; and a, have the same value, say a’; a; or a; should be used if the given A
is greater or smaller, respectively, than the tabulated value. The value a; is
easily computed from a table of the normal probability integral by the procedure
of section 2. The value a; can be obtained by reading off 4/a, from Table II.

TABLE 1 TABLE II
Values of A for which a1 = a2 = a’ for given m, ¢ Values of A/az for given m, e
N\ N
= 2 8 4 = 2 3 4
e \L 4 a’ 4 a’ 4 e’ LG
N N

.001 4.568 2.357 | 5.446 2.008 | 6.152 1.842 .001 1.937 2.712 3.339
.002 4,258 2.228 | 5.059 1.918 | 5.717 1.779 .002 | 1.911 2.637 3.213
.005 3.808 2.047 | 4.512 1.799 | 5.111 1.697 .005 | 1.859 2.507 3.011
.01 3.438 1.910 | 4.074 1.712 | 4.632 1.640 .01 1.800 2.379 2.824
.02 3.034 1.765 | 3.614 1.630 | 4.131 1.589 .02 1.718 2.217 2.600
.05 2.456 1.581 | 2.970 1.533 | 3.425 1.529 .05 1.553 1.937 2.240
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6. Examples. 1) A = 3.8, m = 4, ¢ = .05. Since A4 is greater than the value
3.425 in Table I, we compute a; = 2.162. From Table II we would obtain
A/a; =2.240 and thusa, = 1.696 < a;.2) A =3,m =4, ¢ = .02.Since 4 < 4.131,
we read 4/a; = 2.600 from Table II and obtain a; = 1.153 which will be greater
than a;.3) A = 5, m = 30, ¢ = .05. Using the method of section 4 we obtain
ay = 162
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A CERTAIN CUMULATIVE PROBABILITY FUNCTION

By Sister Mary Aanes Harke, O.S.F.
St. Francis College, Ft. Wayne, Indiana

Graduations of empirically observed distributions show that the cumulative
probability function F(z) = 1 — (1 + 2'°)™"* is a practical tool for fitting a
smooth curve to observed data. The graduations are comparable with those
obtained by the Pearson system, Charlier, and others and are accomplished
with simple calculations. Given distributions are graduated by the method of
moments. Theoretical frequencies are obtained by evaluation of consecutive
values of F(z) by use of calculating machines and logarithms, and by differencing
NF(z). No integration nor heavy interpolation is involved, such as may be
required in graduation by a classical frequency function. Burr [1] constructed
tables of v, ¢, @;, and a4 values for the function F(x) for certain combinations
of integral values of 1/c and 1/k. In these tables curvilinear interpolation must
be used in finding an F(x) with desired moments. The writer constructed more
extensive tables for the same cumulative function with ¢ and % a variety of
real positive numbers less than or equal to one, such that linear interpolation
can be used to determine the parameters ¢ and & for an F(z) that has o3 and
as approximately the same as those of the distribution to be graduated. These
tables have been deposited with Brown University. Microfilm or photostat copies
may be obtained upon request to the Brown University Library.

The writer used the definitions of cumulative moments and the formulas
for the ordinary moments » , ¢, a3, and a4 in terms of cumulative moments
as developed by Burr. These latter moments were tabulated for the function F(x)
having various combinations of parameters ¢ and k, ¢ ranging from 0.050 to 0.675
and k from 0.050 to 1.000, each at intervals of 0.025. Within these ranges only
those combinations of ¢ and k& were used which yielded a3 of approximately 1 or
less and a4 values of 6 or less, since such moments are most common in practice.

It can be verified that over most of the area of the table a; values obtained



