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A NOTE ON RANDOM WALK
By HerBerT T. DAvID
The Johns Hopkins University Institute for Cooperative Research

A random walk is defined as a series of discrete steps along the real line, here
denoted by I. Each step is represented by the chance variable X, with sectionally
continuous density function f(x). The walk begins at any point a of I, and
continues until a step carries us outside some subregion @ of I. In this note, Q is
taken as a finite interval with upper bound D and lower bound D — y. The
chance variables N and Z are, respectively, the number of steps required to end
the walk, and the endpoint of the walk. The range of Z always excludes Q.

Below, we define + = D — a, and consider E(N) as a function G(z, y) of x
and y. Under specified conditions, a differential equation (32) is derived, relating

G(0, y) and G(z, y).

Let
1) Y1) = ft — a)
n—l1
@ = [ @=n - [ T
(2) n—1
f<t—a—§gj)dgx---dgn_l; n>1
where .
[a +Zg,~]eﬂ, forz:1,2,---,n — 1.
J=1
Then
P{Zew,N = n} =f Ya(t) dt for wieQ
P{Zew,N =n} =0 for wyeQ.
Hence
PIN=n} = [t
3) !

BE(N=)i X [ wo at
i=1Jq

The transformation [h; = a + D je1g;;¢:1, -+, n — 1] gives for y¥a(t)
the more convenient expression

W= [ =1 100 -0

(4) -
* I=I2f(h1 - hi-—l)f(t - hn—l) dhl e dhm_l .
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The n-fold integral f ¥a(t) dt is absolutely convergent, hence may be inte-
I
grated first with respect to ¢. This gives, keeping the notation of (4)

(5) [0 dt = [ usha) dhocs.

Assuming that £(N) remains finite for all considered a and Q, series (3) may be
rearranged, giving : E(N) = Y B; where
=1

0

Bi=Y fﬂ ¥i(t) dt.

i=i

Now, By = > P{N =i} = 1. Also, using (5) and induction on n, it is readily

im=]

shown that B, = fn Ya1(t) dt, so that

() E(N) =1+ g [va

Define transformations T, :[g; = D — h;, 2:1, -+, n — 159, = D — .
Substituting expressions (1) and (4) in (6), transform the jth term of the sum-
mation by T';. This gives

n—1

® Y v
@ BN =1+% [ @ [ s~ o) e = gor) dgs -+ dgn
where x = D — a.

By (7), E(N) is a function of z and y; hence we write E(N) = G(z, y).

Define:

M(k) : Max f(t) for | ¢] < F.

K : Any number satisfying K < [1 — €]/M(K).

R :Anyregion[—» <2 < »;0 <Ly < K]

M : Max f(t).

L : Any number satisfying L < [1 — ¢]/M.

R’ : Anyregion [—0 <2 < 0;0<y < L]

In the ensuing argument, we shall assume that

® - (z,y) €R.

This condition restricts certain one-dimensional and two-dimensional variables
to regions over which some infinite series are uniformly convergent with respect
to these variables. Uniform convergence is required to validate term-by-term
differentiations and integrations, and to establish the continuity in one or two
variables of certain functions represented by series.

Arguments dealing with the solution of integral equations (17), (20) and (25)
are valid only under the more restrictive condition
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9) (,y) e R

this being the general sufficiency condition for the existence of solutions. How-
ever, (17) and (20) enter the argument with respect only to the derivation of
equation (21) which could have been derived, though in a more cumbersome
manner, by a term by term comparison of the series expressions for [Au(z, ¥)]
[G(y, ¥)] and for [Gu(z, ¥)] [A(y, ¥)), this latter approach being valid under (8).
Similarly, (25) is used only in obtaining (27), which could have been obtained
by a direct manipulation of the series expression for G(z, y), this approach also
being valid under (8). Hence, all subsequent derivations hold, as long as (z, y) ¢ R

By (8), we may interchange summation and integration with respect to g
in (7). This gives

(10) G(zr,y) =1+ fo ”f(x — 9)G(g, y) dg.

(11) Assume that f(¢) has a continuous derivative everywhere
Then f(z) is continuous and G(z, y) is continuous by (7) and (8). Hence
(12) f(x — ¢)G(g,y) and d/dz f(z — 9)G(g, y) are continuous in (z, g)
(13) flx — 9)G(g, y) is continuous in (9, v)-
Let G;j(z, y) denote
4
dx’ dy’
Then, by (12), we may differentiate (10) with respect to z, and, since
fuolx — g) = —fu(r — g), an integration by parts yields

G(z, y).

(14) Gulz, y) = f(x)G(0,y) — fz — y)G(y, y) + fo yf(x — 9)Gu(g, y) dg.

Further, under (8), Go(z, y) may be obtained by differentiating (7) term by
term, and is continuous in (z, y). Hence, f(z — ¢)Gu(g, ¥) is continuous in (g, y),
and we may differentiate (10) with respect to y, giving

(15) Gulz, y) = flz — y)G(y, y) + fo ”f(x — 9)Gu(g, y) dg.

Adding (14) to (15), dividing by G(0, y) which is always greater or equal to 1,
and letting

(16) Az, y) = [Gu(z, y) + Gulz, »)I/G(0, )

we obtain

(17) Mo y) = @) + [ 1 = oMo, v) do
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Under (9), (17) defines a function

o) = i@+ 3 [ [ g
(18)

n—1

° 'I’lf(gi - g{+1) f(g,,) dgl aee

dgn .

By (8), this function is continuous in (x, ¥) and may be differentiated term by
term with respect to y. Further, Au(x, y) thus gotten is continuous in (z, ¥), so
that f(z — ¢g)Au(g, ¥) is continuous in (g, y). Hence, (17) may be differentiated

with respect to y, giving

(19) Mz, y) = flz — YNy, ) + j; “f@ - gy, y) dg.
Since, under (9), the integral equation

(20) alz, y) = flz — y) + jo‘ 1 — g)alg, v) dg

has a unique continuous solution for every fixed y, (15) and (19) give

Mz, y) _ Gulz, y)

@0 N6y G
Hence
f ’ 2z, y) dr f ’ Gu(z, y) dx
0 = 0
My, v) G(y, v)
and
d [* d ¥
2 3 fo Az, y) dz @ l G(z, y) dz
My, ¥) Gy, y)
(23) Let (1) = f(—1).
Then it is obvious from the definition that
Further, by (15),
Gou(, y) _ _ v _ Gu(g, 1{2
(25) Wl e~y + [ a9 Geb B

so that, under (9), (25) gives for Gu(z, y)/G(y, y) the unique expression

fe—p+ 2 [ [ -

n=]

n—1

which, by (23), is equal to

Ef(gi — gi+1)f(gn - y)dgy -+

dgn
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n—l1

f(?/ - 1‘) + g} j;y (n) ./:’f(y - g,.) gf(gm - gi)f(gl - :v) dgl dgn-

Since, under (8), we may interchange summation and integration with respect
to z, it follows that

) j;yG“l(x’y)dx=j;yf(y—x)dx+ f:./o‘v...(n_g_l)...

G(y) y) n=l
n—1

. _,:,f(?/ — gn) gf(gi+l — 9:)f(gi — x) dgy -+ dg. dzx

which, by a change of integration indices and a referral to (7), is seen to equal
[G(y, y) — 1]. (26) thus gives

(27) [[ nta, v) dz = Gy, 16w, 1) - 11
Further, by (16), (24), and (27),

(28) f ’ Nz, y) dz = G(0, 9) -1

0
so that .
d ¥ d

(29) & j; Nz, y) dx = o G(0, y)

while (24) and (27) also yield

(30) 0—% [ 6, v) dz = 1600, 901
Hence, by (22), (29), and (30),

(31) Nu9) = & 6(0,9)/600, v).

Finally, substituting (31) in (21), and remembering the definition of A\ given in
(16), we get, using (24),

(32) &0, Y)[Gulz, y) + Goxlz, )] = ‘%/G(O, [Gu(z, y) + 2Gu(z, y)l.

The conditions under which (32) holds are, in summary, (8), (11), and (23).
If f(¢) has an expansion

(33) f(t)=}::,]Ait"; el <T

it is clear from (7) that

-]

(34) G(z, y) = A Bijz'y

4,5=

for(x,y)eS,WhereS:[ToS:vST1;0_<_y$T1+To];ToSO,T1<T.
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Substituting (34) in (32), and equating coefficients of like powers of (z, y),
we obtain the recursion formulae
(35) Z BiiBuljll2k—j+1l= 3. Bi;Buli + 1[j — kl; 4:0,1,---

jtk=n jtk=n—1

From (10), it is readily verified that Bx = 0 for 7 5 0, so that equations (35)
give solutions for the B;; in terms of the B, . These solutions are of interest
since they show a one-to-one correspondence between the functions G(0, y)
and G(z, y), for (z,y) ¢ [R N S].

e

NUMERICAL INTEGRATION FOR LINEAR SUMS OF EXPONENTIAL
FUNCTIONS

By RoBerT E. GREENWOOD
The University of Texas and the Institute for Numerical Analysist

1. Introduction. The methods of numerical integration going by the names
trapezoidal rule, Simpson’s rule, Weddle’s rule, and the Newton-Cotes formulae

are of the type
1 n

M [ 7@ ds ~ 2 fain)
1 =0

where the abscissae {z:,} are uniformly distributed on a finite interval, chosen
as (—1, 1) for convenience,

(2) x,-,,=—1+%z, i=0,1,2-,n

and where the set of constants {A:,} depend on the name of the rule and the value
of » but not on the function f(x). Throughout this note all abscissae will be
assumed to be uniformly distributed on (—1, I) unless the contrary is explicitly
stated.

Since correspondence relation (1) involves (n + 1) constants {\:,}, it might
be possible to choose (n 4+ 1) arbitrary functions g;(x),j = 0, 1,2, ---, n,
and require that the set {A;.} be the solution, if such exists, of the (n + 1)
simultaneous linear equations

1 n
3) [1 giz) de = ZO Nin@i(Zin), i=012 ---,n.
Indeed, the selection
4) gi(z) = @, =012+ ,n,

will give a set of (n + 1) simultaneous equations of form (3) and the solution {A;,}
is the set of Newton-Cotes weights for that value of n. The numerical evaluation

1 This work was performed with the financial support of the Office of Naval Research of
the Navy Department. :



