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1. Imtroduction. The extreme value problem as treated in the literature
concerns itself with the following question: To find the distribution of the
smallest, largest, or more generally the »th largest, or »th smallest values in
random samples of size n, drawn from a distribution whose probability law is
given by the d.f. F(z). In this formulation the observed sample values z1, - - - , Z»
are assumed to be statistically independent. While the assumption of inde-
pendence may be a good approximation to the true state of affairs in some
cases, there are situations where this assumption is not justified.

Suppose, for instance, that the observations in the sample are ordered in time.
Then it may happen that successive observations are stochastically dependent,
the extent of this dependence being a function of the time interval separating
these observations.! In such cases the present distribution theory for extreme
values in samples of size n is inadequate and must be replaced by more general
results.

It is clear that a clean-cut analytic solution to the problem of the distribution
of extreme values in samples whose members may be stochastically dependent
can be expected only for certain special kinds of dependence among successive
observations. We are able, in this paper, to obtain the distribution of smallest,
largest, second smallest, and second largest values in samples of size n drawn at
equally spaced time intervals from a stationary Markoff process.

2. The distribution of smallest and largest values in samples of size n drawn
at equally spaced time intervals from a stationary Markoff process. In this
section the following assumption is made:

(A) observations i, %z, *-, %a, -+ are taken in order at times { = 1,
t=2---,t=mn, - from a stationary Markoff random process.

The only information needed in the investigation of a stationary Markoff
process at integral values of time is the function

(1) Fy(z, y) = Prob (z: < z, xia < ?/),

independently of 7, where Fy(x, y) must be such that the marginal distribution
obtained by integrating over z or y (if z; or ;41 take on a continuous range of

1 If the observations 1 , 2, *++ , Tn , -+ - are taken at discrete timest; , 82, ++- ,tn, "
a measure of stochastic dependence between x; and z; is the ordinary coefficient of correla-
tion 7:; . If the observations are taken from a continuous stochastic process a natural
measure of stochastic dependence between observations made at two different times is the
covariance function of the process. In this paper we shall limit ourselves to processes which
are discrete in time.
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values) or summing over the possible values of z; or x;;; (if z; and x.41 can take
on only discrete values) is of the form

2) Fi(x) = Prob (z; < z),

independently of <.

An example of a random process meeting condition A is furnished by the
Ornstein-Uhlenbeck process [1; 2]. In this case the joint d.f. of x; and z;41 is
given by a non-singular bivariate Gaussian distribution. The results in the
present paper are stated completely in terms of the d.f.’s Fy(x, y) and Fi(x)
defining the stationary Markoff process and will in particular be valid for observa-
tions taken at uniformly spaced time intervals from an Ornstein-Uhlenbeck

process.
In this section we shall find the distribution of smallest and largest values in
samples z1 , 2, - - - , T» drawn from a random process under assumption A and

specified by the bivariate d.f. Fu(z, y) and the associated one dimensional
marginal d.f. Fi(z). We first prove Theorem I.

TrEOREM 1. Under assumption A, the distribution of largest values in samples of
size n is given by the d.f. GV (x) = [Fa(z, 2)]"""/[Fi(x)]" .

To prove this result we note that G’ (x), the probability that the largest
value in samples of size n is <z, is given by

3) GP(x) = Prob (m1 < 7,2, < 2, -+, 0 < T).
To evaluate the right-hand side of (3) we proceed as follows:
(4) Prob (1 £ z,2:<2%, - ,2, X T) =

Prob(@ <z, 2Lz, -,z L 2)Prob@. <z |z <2, -+, Tpna < 2).
But under assumption A, (4) becomes

(5) Prob (@ <z, Lz, -+ 2, L ) =

Prob (z1 < z,22 <z, -+, Zn1 L z) Prob (2. £ 2| 2pa < 2)
or
(5 GP(x) = G2i(x) Prob (2, < 2| Zay < 7).

But according to assumption A, and (1) and (2)
(6) Prob (xn < 2| Zna < z) = Prob (zpa < 2, 2. < z)/Prob (a1 < 2)
= Fy(x, z)/F1(z).
Therefore
@ G (2) = GLi(x) Falz, 7)/Fi(2)
= G{"(2) (Fa(z, 2)"7"/(F1(@))"™
= (Fa(z, )"/ (Fi(x))"".
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This proves Theorem I.
Forn = 1, 2, and 3 respectively one gets
®) @ =A@, G k) = RE,z2), @) = (Fir, 2))"/Fi(@).

TreoreM IL. Under assumption A, the distribution of smallest values in samples
of size n is given by the d.f.

Wy _ g 1= 2F(z) 4 Fyx, 2)]""
® @ =1 - F@r=

To prove this result we first note that H " (z), the probability that the smallest
value in samples of size n be <z is given by,

1—="Prob(z >z,2:> 2, -+ ,2, > 7).

To evaluate H{" (z) we proceed as follows:
(10) Prob (m1 >z, 22>, -+ , 3, > 1) =

Prob (z1 > 2,2 >z, -+ ,xaa > ) Prob (. >z |21 >, -+, Tps > ).
But under assumption A, (10) becomes
(11) Prob(@m >z, 22> x, -+, 2, > ) =

Prob (21 > x, 22 > @, -+, Ta1 > ) Prob (, > 2| 241 > 2).
But
(12) Prob (x, > x| &na > z) = Prob (Z.—1 > z, 2. > 2)/Prob (z,_1 > z).
To evaluate Prob (z,—1 > z, ., > z) we note that
(13) Prob (s > z, 2. > ) + Prob (xna < z, 7, > 2)
+ Prob (xn-1 > 2,2, < ) + Prob (@ < 7, 7,.< 2) = 1.

Also

(14) Prob (#a < z, 2, > z) + Prob (#na < z, 7. < 2)
= Prob (z.—1 < ),

and

(15) Prob (#n-1 > z, 2. < z) + Prob (wna < 7,2, < 2)
= Prob (z, < 2).

Recalling that

(16) Fy(z, ) = Prob (xp < 2,2, < )

and

a7 Fi(x) = Prob (z,x < z) = Prob (z. < z)
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we get
(18) Prob (€n1 > z, 2, > x) = 1 — 2F1(x) + Fo(z, x).
Therefore (10) becomes
(19) Prob(@m >z, 20> 2, -+ , T > Z,20 > ) =
Prob (z1 > x, 22 >z, + , a1 > 2)[1 — 2F1(2) + Fa(z, x)]/(1 — Fi(z)).
Applying the recursion formula (19) successively we obtain
(20) Prob (i >z, 22>z, - , 20 > 1) =
Prob (z: > 2)[1 — 2F:(2) + Fy(z, 2)]"7/[1 — Fi(z)]™™
= [1 = 2 Fi(x) + Fi(z, 2)]"V/[l — Fi(2)]*™

Therefore H(z), the probability that the smallest value in samples of size n
is <z, is given by:

1 — 2Fy(z) + Fyz, )]

Dy (
(21) HSD )(x) =1- [1 — Fl(x)]n_g

This completes the proof of Theorem II.
In particular for n = 1, 2, and 3 respectively the d.f.’s of the smallest value in
samples of size n are given by:

H’(z) = F\(z), H;’(z) = 2F\(z) — Fifz, z),

22 - 2
(22) Hél)(x) =1 (1 zﬁl(f)z(f)'ﬂ(x, z)] .

3. Distribution of the second largest and second smallest values in samples
of size n drawn at equally spaced time intervals from a stationary Markoff
process. Under assumption A of Section II we can state the following theorem.

TaeOREM III. Under assumption A the distribution of second largest values in
samples of size n, n > 2, is given by the d.f. G® (z),

G (@) = [Folz, )"/ [Fr@)]™
+ 2[F(z, 2)]" {F1(z) — Filz, 2)}/[Fi(2)]""
+ (0 — 2) [Fofe, )" (Fie) — Falz, 2)}"/IF@)]"(1 — Fi=)).

To prove this result we first note that G (z), the probability that the second
largest value is < z, is given by

GP@k) =Prob @ <2, 2<%, -+, %p < )
+ Prob (#1 > 2,z < 2,53 2, -+, 2, < )
(23) +Prob(mi <z,x2>r, 235 2,242, -, 2, <)+ ---

+ Prob (1 S 2,22 L%, -+ ¢, Tng T, Tpe1 > T, Tn < )
+ Prob (21 < z,2: L2, -0, Tn1 LT, T > 2T).
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According to Theorem I
(24) Prob@m <z 2 <=z - ,zs < 1) = [Faz, 2)]"/[F1(x)]"".
It can readily be shown that
Prob (@1 >z, 22 <z,255< 1, - ,2, < )
(25) =Probm <z, 0 <, ,Tn1 L&, T > )
= [Fy(x, 2)]"”" {Fi(x) — Falw, @)} /[F1(@)]",

It can also be shown that each of the remaining (n — 2) terms on the right-hand
side of (23) is equal to

(26) [Fa(z, )" (Fu(z) — Falz, 2)}*/IF1@)]" (1 — F1(2)).

Combining (23), (24), (25), and (26) we get the desired result in Theorem
II1, ie.,

GP(x) = [Falz, 2)]"/IF1(@)]""
(27) + 2[Fy(z, 2)]"™* {F1(z) — Falz, 2)}/[F1(@)]""
+ (n — 2)[Fa(z, 2)]""° {F1(x) — Falx, 2)}*/[F1(@)]"°(1 — Fi()).

In a similar way one can prove Theorem IV.
Taeorem IV. Under assumption A, the distribution of second smallest values in
samples of size n, n > 2, is given by the d.f. HY (z).

_ 1 = 2F(z) + Fylz, 2)]"
1 = Fy(@)|™

[1 — 2Fi(z) + Fa(z, 2)]""
1 = Fyz)]™

H®(z) =1

(28) -2 {Fi(z) — Fy(z, z)}

—(n—2) [1 — 2F(z) + Fz(x,nx)]"_s {F;(:L‘) — Fy(x, x)}2
1 = Fyz)]® Fy(z) :
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