MOMENTS OF RANDOM GROUP SIZE DISTRIBUTIONS'

By Joan W. TUkEY
Princeton University

1. Summary. A number of practical problems involve the solution of a mathe-
matical problem of the class described in the classical language of probability
theory as follows: “A number of balls are independently distributed among a
number of boxes, how many boxes contain no balls, 1 ball, 2 balls, 3 balls, and
so on.” Problems arising in the oxidation of rubber and the genetics of bacteria
are discussed as applications.

A method is given of solving problems of this sort when ‘“how many” is
adequately answered by the calculation of means, variances, covariances, third
moments, etc. The method is applied to a number of the simplest cases, where
the number of balls is fixed, binomially distributed or Poisson and where the
“sizes” of the boxes are equal or unequal.

2. Introduction. The distribution of the number of empty boxes has been
investigated by Romanovsky in 1934 [3], and, apparently independently, by
Stevens in 1937 [4]. Romanovsky investigated the case of N equal boxes and
m balls for (i) the case where the balls are independent, and (ii) the case where
there is a limit to the size of each box. He gives no motivation for the problem,
and shows that certain limiting distributions approach normality. Stevens
investigated the case of m independent balls for N boxes (i) of equal size, and
(ii) of unequal size, and developed a useful approximation for the last case.
Stevens was concerned with this problem in order to test box counts for non-
randomness by comparing the number of empty boxes with expectation. The
reader interested in that problem is referred to his paper.

The results derived in Part II are based on the use of a chance generating
function, a technique which applies easily to the case where the balls are inde-
pendent. Thus Romanovsky’s results for the case of boxes of limited size are
neither included or extended. For the other cases where the number of empty
boxes has been considered, the results below seem to provide simple moments
and cross-moments for the numbers of boxes with any number of balls to the
extent previously available for the number of empty boxes. Both Romanovsky
and Stevens investigated the actual distribution of the number of empty boxes. A
similar investigation of the distribution of the number of b-ball boxes has not
been carried out here.

3. A chemical problem. In studying the oxidation of rubber, Tobolsky and
coworkers were led to propose the following problem: “If a mass of rubber
originally consisted of N chains of equal length, if each chain can be broken at a

1 Prepared in connection with research sponsored by the Office of Naval Research.
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large number of places by the reaction with one oxygen molecule, if there are m
oxygen molecules each equally likely to react at each link, and if mNp molecules
have reacted, what is the probable number of original chains which are now in
b + 1 parts as a result of b oxygen molecules having reacted with b of their links?
Here an original chain plays the role of a box and an oxygen molecule the
role of a ball. The sort of numbers which may be taken as characteristic are:

N = 10® (number of chains),
m = 10" to 10° (number of oxygen molecules),
mp = 0.01 to 100 (average breaks/chain).

Thus it is almost certainly going to be appropriate to use the results obtained by
assuming N and m very large and p = 1/N very small. We shall return to this
example after discussing the general results.

4. A bacteriological problem. The experiments of Newcombe [1] on the
irradiation and mutation of bacteria have prompted Pittendrigh to propose the
following problem: “Suppose a large number of bacteria each contain m enzyme
particles, which have been formed by the action of a nuclear gene. Suppose
that irradiation destroys the nuclear gene in a certain fraction of the bacteria.
Suppose three generations to occur, during which the m original enzyme particles
are randomly distributed among the 8 descendants of an original bacterium.
If a bacterium without either nuclear gene or enzyme particle is a recognizable
mutant, what is the expected distribution of “families” with 0, 1,2, 3, ---, 8
mutants?”’

Here the enzyme particles are the balls, and the 8 descendants are the N
boxes. We are interested in the number of empty boxes—the problem is that
discussed by both Romanovsky and Stevens, with the exception of an allowance
for cases where the nuclear gene was not lost. We shall return to this problem
also after discussing the general results.

6. The case of large numbers. In case the number of “balls” and “boxes’ is
large, it is natural and has been customary in similar problems to replace discrete
variables by continuous, and derive differential equations. The process runs as
follows: Let yo, 41, %2, * ** , Ys, * - - be the fractions of the total number of boxes
containing no, one, two, ---, b, - - - balls. Let ¢ be the average number of balls
per box (artificially made continuous, so that we may, for example, have a total
of 13 + 3= balls). Increase ¢ to ¢ + dt, then of the y, boxes previously containing
no balls, yo dt will receive one. Of the 3, boxes previously containing one ball each,
1 dt will receive a second, and so on. Hence

dyo
dt

dyn
dt

DY

= =Y,

=Y — U,
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d,
"dltb= yb—l - yb’

and if we start, when ¢{ = 0, with ¢ = 1, and y» = 0 for b > 0, we find

o~
L

(1) n e, b=0,1,2 .

<

The usefulness of this result has sometimes been in doubt, thus Opatowski
[2, p. 164] says in a similar connection: “Consequently - -- the theory appears
less accurate for small values of £.”’

It is shown in Part II that; where n, boxes out of the total of N contain
exactly b balls: (I) When the number of balls and bozes is large and fixed, (1)
is a good approximation to the expectation of 7,/N. (II) When the total number
of balls has a Poisson distribution, and ¢ is interpreted as the expected number,
(1) reproduces the expectation exactly. Since it is appropriate in most problems
involving chemical reactions or irradiation to take the number of balls as having a

TABLE 1
A fized or binomial number of balls and equal boxes
HYPOTHESIS
A total of m balls are independently distributed into N boxes or elsewhere, the
chance of a particular ball entering a particular box is p. The number of boxes
each containing exactly b balls is n; .

Mean of np = E(m) = N (111:) a-»" (rg—fi)b

Variance of ny = E(ns)(1 — (1 — &(b, b))E(ns))
Covariance of n, and n, = — (1 — &(b, ¢))E(ns)E(n.)

w0 = (- 5) " (- (25)) (158)

where m® = m(m — 1) --- (m — b + 1) involving b factors
Higher moments See Section 14

Mean of ny = N(1 — p)”

Mean of n;, = Nm(l — p)" <1_z7))

Variance of np = N(1 — p)™ — N*(1 — p)*» 4+ N(N — 1)(1 — 2p)™
Variance of n; = N(N — )m(m — 1)(1 — 2p)™*p* + Nm(1 — p)™ 'p
— N2m2(1 _ p)2m—2p2
Covariance of np and n; = N(N — )m(1 — 2p)™"p — n’'m(1 — p)*" 'p
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Poisson distribution, the caution suggested by (I) is often shown unnecessary
by (II). For this type of problem the differential equation is entirely adequate!

It is further shown in Part II that, in the Poisson case, the second moments
are exactly those which correspond to random sampling from an infinite popula-
tion with the fractions indicated by the mean number of boxes with 0,1, 2, -- -,
b, - - - balls. This result is not accidental, and it is shown in Part IIT how we can
see directly that the whole distribution in this case is that of random sampling
from such a population.

6. The case of small numbers. The results of Part II also allow us to state
the means, variances, and covariances, for the cases where the differential
equations do not apply. The results are set forth in the following tables: Tables 1
and 2 apply to the cases where m balls are distributed among the given boxes
and possibly others. Thus the total number of balls in the given boxes is either
fixed, when there are no other boxes, or follows a binomial distribution.

TABLE 2
A fixed or binomial number of balls and unequal boxes

HYPOTHESIS
A total of m balls are independently distributed into N boxes or elsewhere, the
chance of a particular ball entering the 7th box being p;. The average of the
p: = p. The sum of the squared fractional deviations of p; from p is A.
pi = p(1 + \;), i\ = A. Terms in ZA%, i, ete, are to be neglected. The
number of boxes each containing exactly b balls is ns .

Mean of n, = E(my) = N (?) (1 = p)™°p" times

A . 2 2
{<1+2N(1 )>((mp b)’ — (m — b)p° — b(1 —p))}

Variances and covariances as in Table 1, using

0,0 (1 - 1) =9 (1 - ()Y ((22)" (1 + )

where ¥y = 2bc <2p - —1—> + terms in p’ and in %

N
The exact value of ¥ is given in Section 16.

Mean of np = N(1 — p)™" <1 + JAZE]V('(ZT("%_T)P)

Mean of n, = Nm(1 — p)" ' p (1 + Alm 27\,(11)1)11 p—).z mp))
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TABLE 3
Pozsson balls and equal boxes

HYPOTHESIS

A number of balls with the Poisson distribution, and expectation Nt are
independently placed in N boxes. The number of boxes each containing
exactlyb ballsfis ns .

Mean of ny = E(my) = N — ¢

tb tb
Variance of 7, = N (b_! e"‘) (1 ~ 5 e")
b

Covariance of ny and n, = —N (i e_') <—ti e_‘)

b! c!
Mean of no = Ne *,
Mean of n;, = Nte !,

Variance of no = Ne ‘(1 — ¢7%),
Variance of n; = Nte ‘(1 — te™"),
Covariance of ng and n; = —Nte ",

7. Discussion of the chemical problem. The number of oxygen molecules
which have reacted in a given time is, at best, distributed Poisson. Thus the
differential equations would give the expected number of cuts, even if the
number of balls or boxes were not large.

The fact that the numbers of balls and boxes, are large makes the variances
and covariances so small as to be practically unimportant. Thus, for example,
with N = 10, ¢ = 1 (1 break per chain), we have:

mean of ny, = (—lz X 10%,
X 1018’
<1 - 2) X 10°,

(1 - 1) X 10%,
(4

. 1
covariance of no and n; = — 7 X 10%,

mean of n; =

D=

[N

variance of ny =

variance of n; =

® | =

Thus the standard deviations are less than 1 part in 100 million of the mean.
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TABLE 4
Poisson balls and varied boxes

HYPOTHESIS

A number of balls with the Poisson distribution are independently placed in N
unequal boxes. The expected number placed in the 7th box is ¢; . The average of
the t;is ¢, t; = t(1 + A;) and ZA? = A. Terms in ZA?, ZA:, ete. are to be
neglected. The number of boxes each containing exactly b balls is ns .

NEe (14 g G =0 = 1)
Variance of ny = E(ns) — <1 + = (b - t)z)(E(nb)y)

Mean of np = E(m) =

Covariance of n, and n, = ~¥ <1 + o (®d — t)(c — t))E’(nb)E'(nc))

2'
Meanof ny = Ne~¢ <1 + ;%)

2 —
Mean of n; = Nte™* <1 + A(t_zNit))

i = Ne¢* At o AT2 3AL
Variance of ny = Ne (1 + §_]\7> Ne (1 " 2N>
2
Variance of n; = Nte™* <1 + >_\Q_2__N_2_t)>

A3t — 6t 1)
2N

2
Covariance of no and n; = —Nt%e (1 + ‘%@)

— Nt% °:<1+

8. Discussion of the bacteriological example. Although this example came
from an irradiation experiment, we are not entitled to jump to the Poisson
case. The balls are not actions of radiation, but rather previously existing
enzyme particles. The purpose of the radiation is merely to make a failure to
hand down a particle obvious.

For simplicity, let us begin by assuming that the irradiation has been strong
enough to knock out all the nuclear genes and none of the enzyme particles. We
face the following problem: “If the m enzyme particles are divided by chance
among 8 descendants, what should be the distribution of mutants, that is, of
boxes with no balls?” .

As far as mean and variance, we can answer this question from Table 1,
with N = 8 and p = 3.
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The results are
mean number of mutants = E(no) = 8(3)",
variance of same = 8(§)™ — 64(3)*™ + 56(%)™.

For small values of m we get the values tabled below:

TABLE 5
Blanks out of 8
m mean variance mean (1 - me;n.n)
0 8 0.000 0.000
1 7 0.000 0.875
2 6.125 .109 1.436
3 5.359 .262 1.769
4 4.689 417 1.941
5 4.103 .556 1.998
6 3.590 .666 1.979
7 3.142 747 1.908
8 2.749 799 1.804
9 2.405 .825 1.682
10 2.105 .829 1.551
15 1.079 .663 934
20 0.554 426 515

We notice that the variance is substantially less than the mean.

Now it might be that the number of enzyme particles is not constant from
bacterium to bacterium. It would not be unreasonable if it had a Poisson dis-
tribution. If this were the case, we would revert to the differential equation
solution, which is also given in Table 3. The last column in Table 5 shows the
variance which would then arise for the same means. The variance is still some-
what less than the mean. The situation is shown graphically in Figure 1.

If the actual distribution of n, is desired, then it can be calculated for the
case where m is fixed from the tables in Stevens’ paper [4], and when m is
distributed Poisson it is merely a binomial distribution.

PART II

DERIVATIONS

9. The chance generating function. We are considering the following class of
problems: “balls” are placed ¢ndependently in “boxes” and then the number 7,
of empty compartments, the number n; of compartments containing exactly
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one ball, - - - , the number 7, of boxes with exactly b balls, and so on, are observed.
We are interested in the moments of no, ny, n2, -+, %3, -+ both simple
and mixed.

RATIO OF VARIANCE TO MEAN
FOR NUMBER OF EMPTY BOXES OUT OF EIGHT

1.0
FIXED NUMBER OF BALLS,AS INDICATED e
POISSON DISTRIBUTION OF NUMBER OF BALLS ==
0.8
0.6}
8
Z
3l
Tl=
>
0.4}
0.2}
1 1 l. 2 [ ]
[o] 2 4 6 8

AVERAGE NUMBER OF BLANKS
Figure 1

We define chance quantities z;, by
{x, gth ball in the ith box,
Toy =

1, otherwise.

Clearly the product of all z;, for fixed 7 is given by
II Lig = 4 (number of balls in the ith box)

Thus Iz, = «* if and only if there are exactly b balls in the ¢th box. Hence
the coefficient of 2* in =1z, the sum of Izi, over all boxes %, is ny, the
number of boxes containing exactly b balls.
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We have the relation
S’ = fx) = Zdlzxy,,

where f(z) is a chance function, and the n; and the z;, are chance quantities.
Now we take expectations of both sides, and use the fact that the expectation
of a sum is the sum of the expectations to obtain

2a’E(ny) = E(f(z)) = ZE(xs,).

Now z;, and z;;, for ¢ # r, are independent since they are determined by
different and independent balls. Hence E(Ix:) = I,(Ex;) and we have the
basic formula

ON E(f@)) = Zu'B(m) = ZJLE(zy).
10. Higher moments. By extending this device, we can obtain generating

functions for higher moments. Instead of the z,, , we introduce a whole sequence

of chance quantities Z.; , Yig, 2ig, -+ * , Wiq, defined by
(z,y, - -+, w), gth ball in 7th box,
(1,1, ---, 1), otherwise.

(xiq) Yigy **° ’wiq) = {

We find immediately that
J@f@) - - fw) = EdlZi)(EaLyir) -+ (Zallyway)
=22 ZallTigsq +** Wng.
Taking expectations on both sides
E(f@)f@y) -+ fw)) = 2:Z; - - ZE(MZagyiq + * + Wag)

= Z:Z; -+ Zall B (Zigljq =+ + Wag),

where we have used the fact that z:yq - + - Wae and Tiyjr - - - Wy, are independent
when ¢ # r since they are determined by different and independent balls.

On the other hand,
f@)f@) -+ fw) = Cm?)(Eng) -+ (Sanaw®)

Ebzc o e Ea(nbnc cee na)(xbyc coe wa)

so that
EFf@)f(y) -+ fw)) = 226 -+ Za@y" -+ w)E(mane - - - na).

Equating the two expressions for the expectation of f(x)f(y) - -- f(w), we have,
finally, the generating function for E(nsn. - - - n,) in the form

@ 2 @Y WEune e na) = 2 TLE(@iqyse -+ Wao).
E o

Thus a knowledge of E(x;yjq * -+ Wng) Will allow us to determine the moments
of the n’s.
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11. A fixed or binomial number of balls and equal boxes. Let there be N
boxes, and m balls, each with probability p of entering each box. If pN' = 1 we
have the case where m balls always appear in the boxes taken together—the
case of a fixed number of balls. If pN' < 1, the number of balls appearing in all
boxes taken together is a binomial with expectation mpN.

Now z;, equals 1 with probability 1 — p and equals  with probability p,
hence (1) becomes

bebE(nb) = ZI,1 —p+ pr) = N1 — p + pzx)™

Using the binomial theorem, the coefficient of z° is

3) E(m) = N (?) Q-p)" =N (?) a-p" (—I—?T;))b

Now if p is small, we may approximate 1 — p by ¢ * and by 1, respectively,
in its two occurences, where

E(m) =~ N (%)e_""’pb
and if m is large compared to b this becomes
b
E(n) %N(—"g)—) e,
12. Second moments. We must study E(xiyi). If ¢ = j then this is

(1 — p + p=y) since the gth ball falls into both the 7th and jth boxes with proba-
bility p, otherwise into neither. If ¢ 5 j, we immediately find the expectation

to be (1 — 2p + pz + py).

Hence, since 7 = j in N cases, and 7 5 j in N(N — 1) cases,

T E@ayi) = N1 — p + pzy)™ + NV-— 1)(1 — 2p + pz + py)",
by (2) this equals 2, E(nsn.), and using the multinomial expansion we find

Blung = NNV —1) (zﬁ) (4 = 295 + 36,98 (1) (0 = ™7,

where 8(b, ¢) = 1 when b = ¢ and is zero otherwise, and where the multinomial

coefficient m) is given by

be
my\ _ m!
be)  blelm —b — o)l
We now set

) E(ngne) = Emy)E(no)2(, ¢) + 8(b, c)E(ns),
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when
(b, o) = yw-u (;)nc>(1 - 2p)"; (T":-%i)m ;
N(ZL) 1-p" (1—f5> N(’Z) 1 o) (i_ﬁ_»
%) _ _ o
= (1 - %,) (?()bét) ((1 mlp)(lzg p)) (11_ 21;)>H

- (1-%) = (- (25)) (G=3)

where u® = u(u — 1) --- (u — b + 1) denotes a descending factorial with b
factors. ,

Notice that, if the ns were independently distributed in Poisson distributions,
the second moments would be given by the same formula with ®(, ¢) = 1,
while if they were distributed like a multinomial sample from an infinite popula-
tion the second moments would be given by the same formula with ®(b,c)=1 — ]%,

For small p, we have

b

N m®

2(b, ¢) N(l - 1>(m—-—c)“°

and if m is large compared to b and ¢, this approaches the multinomial value

&0, c) ~ (1 — %)

13. Variances and covariances. The variances and covariances are given by
Variance (ns) = E(nsns) — E(ns)E(ns)
= E(ny)(1 — (1 — 2(b, b))E(ns)),
and
Covariance (ns , ne) = —(1 — ®(b, ¢))E(ny)E(n,).
Thus the covariance of ns and n. will vanish when, and only when (b, ¢) = 1.
Let us suppose pN = %, with p small and m and N large, and see if ®(b, c)

can be unity. Since a preliminary calculation shows it to be reasonable, let us
put m = yN. Then

(YN — 9®

(’YJV)T_ a- p2)1N(1 + p)b+c.

®(b, ) =~ (1 — 8p)
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An easy calculation shows that the ratio of descending factorials is nearly
—be/ YN (—beflv)p
b

¢ =e
making further natural approximations,
be
In 80, 0) ~ — fp — “L p — WNp' + (b + )p
and this may be written

2
In (b, ¢) ~ —%((2g—b—c+ﬁ) + 48¢c — (b—ﬂ—c)z),

and this vanishes for real ¥ when and only when |b — 8 — ¢| > +/48c. This,
then, is the condition on b and ¢ which permits the existence of two ratios of m
to N so that for either ratio and large N there will be no correlation between

np and 7. .

14. Higher moments. To deal with the third moments, we need E(z:y/;52kq),
which is easily seen to behave as follows:

Relation of ijk number of occurrences Ezxpectation of xiq¥iq2re
1=7 = N 1 —p+ payz

1=35 %=k NN —-1) 1—2p+ pxy + pz
t=k#*j NN —1) 1 — 2p + pxz + py
j=k#1 NN —-1) 1 —2p+ pyz + px
different NN — 1DV —2) 1—3p+ pz+ py + pz

Thus we have

Sy 2L E(nsneng) = N(1 — p + pryz)™ + NN — 1)1 — 2p + pay + p2)™
+ NV — 1)(1 — 2p + pez + py)" + NN — (1 — 2p + pyz + p2)"
+ NV — 1)(N — 2)(1 —3p + pz + py + p2)"

from which we can calculate all third moments.

In general if ¢ is a decomposition of the product zyz - -+ w into & monomials
Uy, Us, **+ , Ua , Where order is disregarded (for example: xyz = (x2)y = (e2)y =
y(zx) = y(xz) is a single decomposition with « = 2, w; = 22, u» = y), then the
generating function becomes

SNOA+ (u+ we+ -+ + U — @)p)™

15. Poisson balls and equal boxes. To reach a Poisson distribution we let
m — o and p — 0 so that mNp = {N, where ¢ is the average number of balls
per box in the Poisson distribution.
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Since

under these conditions, (3) becomes

b
(6) E(ny) = 17! e’

1
and from (5) it follows that the limit of ®(b, c) is <1 — N) so that

e p
7 E(msny) = N(N — 1) — e 2 + 5(b,c)N - ¢!,
ble! b!
and hence
£ £
(8) Variance (ny) = N <— e“) (1 - = e*‘),
b! b!
b C
(9) Covariance (ny, n) = —N (%' e_‘) (i—' e") .

Notice that these are the moments of the numbers of objects of types b, ¢, - - -,
in a random sample of N from an infinite population where the fraction of
b’sis & ¢ '/bl, just as it should be.

16. Fixed or binomial balls and varied boxes. We now consider the case
where the chance of any ball entering the sth box is p;. We shall again not

restrict ourselves to the case Zp; = 1.
The expectation of z,, is immediately seen to be (1 + pi(x — 1)) =
(1 — p: + ps), so that the generating function is

f@ = 2 — pi + pa)™

and the expectation of n is

a  Ea) = (7) 50 - w0t = ()50 - (7).

Following Stevens [4] with a slight modification, let us set p; = p(1 + A),
where p is the average of the p;, so that Z; = 0. Then

(=) = = p0+2) = (=) (1- 22,

so that

m~b
(1 — p)"pi = (1 — )" (1 - lfff‘p) 1+ 2"
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Expanding the summand, we find
1 +{—("1“ bp b} N
-Pp

(m —b)(m —b—1p* (m—bbp , b — 1),
+{ 50— p)? - T3 }xi+o(xﬁ).

Hence, setting A3 = A (notice this is not the same as Stevens’ A!l), we have
m
E(m) = <b> a$—p"p

N m — b (p(m—l)—b)z_b(m—l)) 3
The expectation for all p; = p has been modified by multiplication by

(11) 1+A{ m—b (pm —1) —b)° b(m_l)}
1

2N\m —b — 1 QA—-p? m—0b-
plus terms of higher order. For large N and consequently small p the quantity in

braces is nearly
m
b (b b b)

and more roughly is approximately b’. Similarly, the expectations of second
moments are

E(nyn.) = <m> 2 (= pi— p)" " pip; + 800, d(?) 25— p)™pi,

be) 7

whence

(:ﬁ) 21— pi — )™ Pl

<?l1:><ncz) ETI — T — )R

Making the same sort of expansion yields

a9 06,0~ (1= 3) "= (- 25) (12 2) (+5%)

where terms in Z\! have been neglected (note that

2= =Xl = -1,

A7

and where

[ m—b—c N-—2 . m—b -
'p_{m—b—c—lN—l(l_zp) ‘m(l"”}
{p(m — 1) — b}’
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Ha Ty - i )
{plm — 1) — ¢}’

1 m—->b-—c¢ N N -2 - \
+§m~b—c—1{N_1—N_1(1—2P) }(b—c)

i 1 2bc b’e _ b }
m—-b—c—1\N—-—1 m—b—1 m—c—1/"
This can be reducedv to

¢=2w(mw—§)+wxﬁ»+o(%)

b
and for p = 1/N + O@p®) + O(]Tf)
¥ = 2pbc + O(pz).

17. Poisson balls and varied boxes. To reach the Poisson limit, we let m — o«
and p; — 0 so that mp; = ¢; . The generating function for first moments becomes
f(a:) — E.e—t;+t;z

and the expectation of n; is

(15) E(m) = %

—t

H
l—)—! e
If we set t; = {(1 4+ A;), this becomes
b
E(m) = %r e Tl 4 A)Pe ™

The summand expands in the form

b — 1) .2 , b — 1)(b — 2)
g M+ 5 A?+---)

><<1 _tx-+f-2>\?—‘-3x4+ )
1] 2 1 6 1

(1 + o\ +

b — 1)
2

If ¢t is chosen as the average of the ¢; so that Z\; = 0, the sum becomes

(b—t)z—b> 2 ((b—t)3 3b—2 bt) s, ..
N+<”“T"“ Mt -5 t3)N+

Again setting ZA\? = A we have

(16) Eny) ~ ;; ¢ (N + ((b_:_gz—:f) A)

2
=1+(b—t))\.~+< —bt+t§>)\f+--.
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which can be written
E(nb) ~ N b' _t< ((b _ t)z _ b))
The generating function for the second moments is
f(x)f(y) = 2;,e~t‘+‘i=—t;+t,~y

so that the expectation of nn, is
ti—t;

17) E(myn,) = ; 2 t,b| 1 =+ (b, ¢ Z b g
which becomes
bc
E(mn,) = 5,;, e Z (1 + N1 + A)°e™ ™™ 4 5(b, ) E(ms),

whence we can derive

(18) B, A1 — 1 — onn 6 — 0= 0.

Thus

(19) Variance (m) =~ E(m) — {1 + == (b - t)} (BE(ny))?,

(20) Covariance (nyn.) =~ — %(1 -+ 51]}\}' b — ) — t)) E(ny)E(n.).

18. Boxes in a systematic square. Another case which it may be worthwhile
to write down arises when the boxes are systematically ‘“‘rotated”” under ‘“spouts”
of different probability. That is, the number of balls m is a multiple of the
number of boxes N, and the probability of the gth ball entering the ¢th box.
depends on the value of ¢ — ¢ taken modulo N. An example for N = 3 and

m = 6 follows:

Probabilities of entry

Box # Ball 1 | 2 3 ‘ 4 l 5 6
1 Do D1 P2 Do D1 P
2 D2 Do 21 23 Do D1
3 Pt P2 Do y2! D2 Do

If m = kN and the subscript » runs through 0, 1, 2, ..., N — 1, then the

expectation of f(x) becomes

2:2E(xi) = N{IL(1 — p, + pa)}™



RANDOM GROUP SIZE DISTRIBUTIONS 539

Thus first moments, and by proceeding similarly higher moments, are available
for this case also.

PART III

THE POISSON. CASE

19. The Poisson case with equal boxes. The Poisson case is obtained in the
limit as m — « and p — 0 with pm = . We wish to show that, in the limit, the
number of balls in the different boxes are independent. Let k&, ks, - -+, kx be
the number of balls in the first, second, ---, Nth box, respectively. Then the
distribution of the k’s is given by, where we write k = k; 4+ k2 + - -+ + kx,

m® m® (1 — Np)™™ . (mp) bie™

k m—k __
R P NPT = S Y

mp

Now the first two fractions clearly approach unity in the limit, and the inde-
pendence is proved.

Since the number of balls in each box has an independent Poisson distribution,
the distribution of the numbers of boxes each with exactly b balls is that of a
random sample of N from an infinite population—namely it is a multivariate
distribution with probabilities

(mp)b e—mp
b!
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