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ABSTRACTS OF PAPERS

(Abstracts of papers presented at the New York meeting of the Institute,
December 27-30, 1949)

1. The Asymptotic Distribution of the Extremal Quotient. E. J. GuMBEL, New
York, anp R. D. KEENEY, Metropolitan Life Insurance Company, New York.

The extremal quotient is the ratio of the largest to the absolute value of the smallest
observation. Its analytical properties for symmetrical, continuous and unlimited distribu-
tions are obtained from a study of the auto-quotient defined as the ratio of two non-nega-
tive variates with identical distributions. The relation of the two statistics is established
by proving that, for sufficiently large samples from an initial distribution with median
zero, the largest (or smallest) value may be assumed to be positive (or negative) and that
the extremes are independent. The logarithm of the extremal quotient has asymptotically
a symmetrical distribution. Its median is unity. As many moments exist for the extremal
quotient as moments and reciprocal moments exist simultaneously for the initial variate.
For the exponential type of initial distributions, the asymptotic distribution of the ex-
tremal quotient can only be expressed by a complicated integral which may be approxi-
mated in the interval 3 < q < 2 by the logarithmically transformed normal probability
function. In this case, no moments exist. For the Cauchy type, the asymptotic distribution
of the extremal quotient is very simple. The logarithm of the extremal quotient has the
same (logistic) distribution as the midrange for initial distributions of exponential type.
For both initial types, the asymptotic distributions of the extremal quotients possess one
parameter which may be estimated from the observations.

2. A Second Formula for Partial Sums of Hypergeometric Series having the
Unit as Fourth Argument. HERMANN vON ScHELLING, Naval Medical Re-
search Laboratory, U. S. Submarine Base, New London, Conn.

If the arguments « and B are changed after the summation, published Ann. Math. Stat.
Vol. 20, (1949) p. 120, and this method is applied a second time, a new formula results for
partial sums of F(a,B,v;1). A simple recurrence formula is developed for these partial
sums. The new equation is a numerical short cut as it is demonstrated with an example.

3. A Coverage Distribution. HERBERT SoromoN, Office of Naval Research,
Washington, D. C.

Consider a fixed target circle of radius T and center at a distance R from an aiming
point. Let N circles each of radius Wr be dropped at the aiming point with their centers
subject to a bivariate normal distribution with circular symmetry, the common standard
deviation denoted by ¢. Define vy as the set theoretical sum of the N random circles with
the fixed circle and let ¢ be the ratio of v to the total area of the fixed circle. Then it is
desired to find Pc, where

P., = Plc > ¢, | Tr, Wg, R, N}
where Tr, Wr, and R are in o units. Define R* = Wgr + aTr where a = a(c, We, Tr);

la] < 1. It is shown that for N = 1, the family of curves in the RR* plane
defined by Pc, = constant have a siope, m, given by

L(RR*)
™ = I(RR%

where I, is the modified Bessel Function of k* order. In fact as the product
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RR* approaches infinity, m approaches unity. From these results, the contours of equal
probability are easily determined. When N > 1, overlap considerations make the compu-
tation of explicit values for P, intractable. However, in this case, upper and lower
bounds for Pc, can be obtained.

4. The Problem of the Greater Mean. R. R. BAHADUR AND HERBERT ROBBINS,
University of North Carolina, Chapel Hill.

“Optimum” solutions (in the sense of Wald’s theory of statistical decision functions)
are obtained for the ‘‘problem of the greater mean”. Let =; ( = 1,2) be normal popula-
tions with means m; and common variance o2, all unknown, and denote the arbitrary but
given set of possible parameter points w = (m; , ms:a) by Q. Suppose that a set of n, +
n3 independent observations is drawn, n; from =; , and let v = (2w, +++ , Ziny ; 221, -
Zany) denote the sample point. Any measurable function f(v) such that 0 < f(v) < 11is called
a decision function. Given a ‘‘risk function” r(f | ) defined for all f and all we Q, a deci-
sion function f*(v) is “optimal” if (2) sup[r(f* | w)] = inf sup [r(f | w)], and (#2) no decision
function is ‘“‘uniformly better’ than f*(v). If f*(v) is the unique (up to sets of measure 0)
decision function with property (z), it is ‘““optimum”’. Case 1. Given any decision function
f(v) and any v € Q, let

r(f | @) = max [m, ma) — mE [ f] 01— mE[l — flol.

1if £ > % <
) = : (i-’ = a7 Zl l‘ii)
=

0 otherwise

Let

It is shown that under certain conditions on 2, f°(v) is optimum. Case 2. Given any decision
function which takes on only the values 0 and 1, corresponding to the two decisions ‘“‘m; <
my”’ and ““m; < my’’ respectively, and any » € Q, let

r(f | ) = P(incorrect decision | w,f).

It is shown that under certain conditions on €, f°(v) is optimal. The conditions on Q are
very similar in the two cases, and are likely to be satisfied in most applications. However,
it is shown by examples that there exist non-degenerate types of @ with respect to which
decision functions other than f°(v) are wuniformly better than f°(v). The methods
of the paper can be applied to a number of similar problems.

5. Some Extensions of Bayes’ Theorem. F. C. Leone, Case Institute of Tech-
nology, Cleveland 6, Ohio.

There is some past or a priori knowledge about the quality of a population of lots and a
sample is taken from a random lot. What can be said about the lot from which this sample
is taken? We are incorporating the results of our experiment or sample with the previous
knowledge to form a judgment. From the a prior: distribution and a sample of n with ¢
defectives, say two in twenty-five, we form an a posterior: distribution of all two in twenty-
five cases. From this distribution we can answer questions such as: “What is the a pos-
terior: probability that a lot producing a two in twenty-five result should have a propor-
tion of defectives ten per cent or below?’’ We consider as our a prior: situation such
distributions as the rectangular, triangular, normal, Pearson’s Type III and Type I.
These extensions are applied to some industrial data. In considering lot quality on one
hindred per cent inspection, the a priori distributions of these data are mostly.
U-shaped with some bell-shaped and J-shaped. In some cases a Pearson Type I proves to
be a good fit for the a priori distribution.
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6. On Optimum Selections from Multinormal Populations. Z. W. BIRNBAUM
AND D. G. CrarmaN, University of Washington, Seattle.

Let (X, Yy, -+, Y,) have an (n + 1)-dimensional non-singular normal probability
density f(X, Y1, ---, ¥,). By “selection’ in (Y1, -+ , ¥») we shall understand a meas-
urable function ¢(Y;, -+, Y,) such that 0 < ¢ < 1 forall ¥, , ---, ¥, . By a “trunca-
tion in (Y, ---, Y,) to the set @’ we understand a selection ¢(Y;, ---, Y,) such that
o = 1for (Y1,---,Y,)inQ, and ¢ = 0 in Q. A “linear truncation’’ will be a truncation

n
to a set defined by a condition of the form Z ¢.Y; > k. Using a slight generalization of
c=1

Neyman-Pearson’s fundamental lemma, the following theorems are proven: among selec-
tions for which the expectation of X, after selection, assumes a fixed value, the one which
maximizes the “retained” portion of the universe f:--f (Y1, ---, Y,) f(X, Yy, ---
Y,)dXdY, --- dY, is a linear truncation. Among all the selections for which a given quan-
tile of X, after selection, assumes a fixed value, the one which maximizes the retained
portion of the universe is a linear truncation. (Research under the sponsorship of the Office
of Naval Research).

7. Simple Regression Analysis with Autocorrelated Disturbances. Howarp L.
Jongs, Illinois Bell Telephone Company, Chicago.

When the disturbances in a regression equation are connected by a linear difference
equation, the parameters of both equations can be estimated simultaneously by maxi-
mizing a function that describes the joint probability of the disturbances or a linear func-
tion thereof. This note discusses a simple example.

8. A Test of Klein’s Model III for Changes of Structure. A. W. MARSHALL,
The Rand Corporation, Santa Monica, Calif.

This paper suggests a test of equations from linear stochastic equation systems on the
basis of observations not included in the original computation period. Rejection regions
of approximately the right size (asymptotically correct) are constructed and the use of
naive economic models as an auxillary test are suggested. The procedure is applied to
Klein’s Model ITI, the results are tabulated and discussed.

9. An Application of the Theory of Extreme Values to Economic Problems.
S. B. Lrrravuer, Columbia University, ANp E. J. GumBEL, New York.

Most studies of economic time series have been concerned with establishing regularities
of behavior, often by analogy with mechanical systems. Much as regularity in economic
phenomena is desirable, such evidence as has been available leaves the reality of
this sought for regularity considerably in doubt. It seems more fruitful rather to ask the
question, ‘“What is the pattern of the non-regularity” and if reasonably answered, to offer
some verifiable form of explanation therefor. It seems further desirable that any attempt
at “scientific’’ explanation of ecohomic phenomena be fortified by evidence of statistical
stability supported by criteria such as were established by Shewhart for the control of
quality of manufactured product. In the present instance certain concepts of experimental
inference, which seem natural therefor, are employed in order to give some general and
plausible unity to the behavior of economic time series.

“Following upon the postulates of the theory presented here, the appropriate formal
development employs concepts of statistical quality control and of the statistical theory
of extreme values. Within this theory the importance of the absence of statistical stability
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is emphasized, and the relevance of the use of concepts in extreme values is made evident.
By introducing a superuniverse, peaks and troughs are random expressions of a super
chance-‘‘cause’” system. The use of these statistical concepts is not motivated by mere
analogy but rather as the natural means for explanation of the phenomena studied.

A number of examples of the application of these statistical methods to selected series
are offered as evidence of the workability of the theory here presented. The extremes of
the Dow-Jones index of selected industrials show that the 1928 value was completely out-
side the previous levels and should not have been considered as a ‘‘stable high plateau
basic for perpetual prosperity”. Instead this should have suggested the imminent break-
down, The validity of the application of the theory of extreme values to these phenomena
is not so strongly substantiated as are the many applications that have been made of them
to flood frequencies, wind velocities, extreme temperatures, breaking strengths and other
natural phenomena. Nevertheless the results here obtained are highly suggestive of a
tenable economic hypothesixs. .

10. Bias Due to the Omission of Independent Variables in Ordinary Multiple
Regression Analysis. (Preliminary Report). T. A. Bancrorr, Iowa State
College, Ames.

Given n observations of the dependent variate y and the independent variates zi,
Za, +++ , Zn, +++ , Tr, k < r, all variates measured from their respective sample means,
and we have calculated the ordinary regressmn of y on the first k variates and y on all r
variates. We define ordinary multiple regression as the single-equation approach, error
only in y which is assumed normally and independently distributed with zero mean and

variance ¢? , the z; being fixed from sample to sample.

In order to determine whether to omit or retain the last (r — k) independent variates
we formulate a rule of procedure: calculate Snedecor’s F =

Reduction in Sy? due to (r — k) variates/(r — k)
Error mean square after fitting all » variates

If F is non-significant at some assigned significance level a, we pool the sums of squares
and degrees of freedom, involved in the numerator and denominator of F, to obtain an
estimate of the error ¢®, and fit y on the first k variates only. If F is significant at the
assigned significance level we use the denominator only in F for our estimate of o? and
hence fit y on all r variates.

The object of this investigation is to determine the bias in our estimate e* of o, if we
follow such a rule of procedure. The bias turns out to be

2 a3 [I,., ("§+ Ly +i)
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n, and 7, are the respective degrees of freedom for the numerator and denominator of F,

-

and Z (8i)* is a function of the population regression coefficients 8e+1 , + -+ , 8- . The bias
i=k+1

is discussed for selected values of the parameters involved.
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11. Estimating Parameters of Pearson Type III Populations From Truncated
Samples. A. C. CorEN, Jr., The University of Georgia, Athens.

The method of moments is employed with ‘single’ truncated random samples (1) to es-
timate the mean, i, and the standard deviation, o, of a Pearson Type III population
when as is known and (2) to estimate u, o, and as when only the form of the distribution
is known in advance. No information is assumed to be available about the number of
variates in the omitted portion of the sample. The results obtained can be readily ap-
plied to practical problems with the aid of “Salvosa’s Tables of Pearson’s Type III
Function.” An illustrative example is included in the paper.

12. The Cyclical Normal Distribution. E. J. GumBeL, New York.

The usual normal distribution becomes invalid for variates, like an angle, lying on
the circumference of a circle. The distribution of such variates was established by
R. von Mises by the same methods as used for the classical derivation. The cyclical normal
distribution is symmetrical about a mode and antimode. The probability function is pro-
portional to an incomplete Bessel function of the first kind and of order zero for an imag-
inary argument, and contains two parameters, the direction of the resultant vector and a
parameter k linked to the absolute amount of the vector. The parameters may be estimated
by the method of maximum likelihood. For k& = 0, the distribution degenerates into a uni-
form cyclical distribution. If k is of the order 3, the distribution approaches the linear
normal one, k being the reciprocal of the variance. With increasing values of k, the dis-
tribution looses its cyclical character and becomes concentrated in a narrow strip. This
distribution holds for symmetrical unimodal values varying according to pure chance
about a unique mode in a closed space (as the angles of the wind directions) or a closed
time, and gives a theoretical model for the variations of temperatures, pressures, rain-
falls, storms, discharges, floods, death- and birth rates over the year, and earth quakes
over the day. The comparison between theory and observations in plotting the square
roots of the frequency on polar coordinate paper provides a statistical criterion for the
regularity of cyclical phenomena. (Work done in part under contract W 44/109/QM /2202
with the Research and Development Branch, Office of the Quartermaster General).

13. Treatment of Attenuation Problems by Random Sampling. H. KAEN AND
T. Harris, The Rand Corporation, Santa Monica, Calif.

Exact analytical calculations of the transmission of energy by particles through shields
are difficult; to avoid them random sampling methods may be resorted to. The straight-
forward procedure of simulating life histories of particles, using random number tables,
may be used for thin shields, but in the case of thick shields with tremendous attenuations,
tremendous numbers of particles would be required. In order to obtain reasonably small
standard errors, using reasonable numbers of simulated life histories, it is necessary to
modify the original problem to one having a lower attenuation factor, the solution bearing
a known relation to the solution of the original problem. Alternatively, this may often
be regarded as an application of well known statistical sampling procedures, such as repre-
sentative sampling or importance sampling. Various special procedures can be devised.
One of the first was the splitting technique due to J. v. Neumann. Among others may be
mentioned the exponential transformation, a simple analytic transformation of the origi-
nal problem into one having a much lower attenuation factor.

14. On the Existence of Nearly Locally Best Unbiased Estimates. HERMAN
Rusin, Stanford University, Stanford, Calif.

For any family f of distributions, and any distribution F, of F, there exists a bilinear
function K whose arguments are all parameters defined for all distributions of & and for
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which there exist unbiased estimates which have finite variance if F, is the true distribu-
tion, and which has the following properties: (1) If 6 is any parameter in the domain of
K, and ¢ is any unbiased estimate of 8, then var(t | Fo) > K(9, 6). (2) This result is best
possible, i. e., for any ¢ there is an unbiased estimate ¢ of § whose variance differs from
K(8, 6) by less than any preassigned amount.

15. The Experimental Evaluation of Multiple Defiinite Integrals. GEorce W.
TAYLOR, U. 8. Army Electronics Laboratory, San Diego, Calif.

When one is forming an estimate of the total, or mean value, of some quantity, sam-
pling at carefully selected points will frequently be preferable to employing a method
which involves randomization. The estimation of the total volume of water in a given
lake or the amount of energy being released in a given time and space, are examples of
problems where specified points for sampling should result in a reduction in the error of
estimate. These and similar problems lead naturally to numerical integration methods.
In the case of single integrals, Gauss’ and Tchebychef’s formulae yield maximum efficiency
with respect to controlling the polynomial error and statistical error respectively, but
often the Newton-Cotes formulae can be applied more conveniently.

For the evaluation of double integrals, an eight point and a thirteen point formula for
fifth degree accuracy and a twelve point and a twenty-one point formula for seventh de-
gree accuracy have been developed for integrating over a rectangle and similar formulae
have been developed for integrating over areas bounded by a parabola and a straight
line or by two parabolas. The following system of equations is employed in developing
these formulae:

i Raz'yl, = Cyj, forall 4, for which i + j < 2n,
=1 a“bj
G+ DG+ 1)
= 0 otherwise.

and where Cy = for both 7 and j even,

Formulae for the numerical evaluation of triple integrals taken over a rec-
tangular parallelopiped are developed, including a twenty-one point formula with fifth
degree accuracy. It is shown that comparable formulae can be developed for integrating
functions of more than three variables and a 2n + 1 point formula with third degree ac-
curacy for integrating a function of n variables over a rectangular n-space is obtained.
16. Tests of Fit of a Cumulative Distribution Function over Partial Range of

Sample Data. Braprorp F. KimBarL, New York State Dept. of Public
Service, New York.

Case 1. Sample data are completely ordered over range tested.

Let then + 1 true frequency differences associated with an ordered random sample of
n values of z be denoted by w; . The cdf of a theoretical test function based on m of the
above frequency differences is identified and methods of approximating it are discussed.
Case 2. Sample data in k ordered groups over range tested.

Let A; F denote the true frequency differences over the & sample intervals to be covered
by the test. Let m; denote the number of unit frequency differences u; covered by the ith
interval. Define M and W by

M4+1=3m, MZn;
k

W = ;JA;F, W=s1



ABSTRACTS 145

A theoretical function Z is defined by

M+ 1DM+ 2 > [AsF — miW/(M 4+ 1P
- k-1 % ms ’

z

Set
Y = Z/Ws.

The cdf of Y is identified and methods of approximation to it are discussed.
Applications to testing agreement of sample with hypothetical ¢df of universe are con-
sidered for both cases in some detail.

17. Large Sample Tests for Comparing Percentage Points of Two Arbitrary
Continuous Populations. A. W. MarsHaLL anp J. E. WaLsH, The Rand
Corporation Santa Monica, Calif. .

Let us consider two continuous populations, the first with density function f(z) and
100a% point 6. , the second with density function g(z) and 10089 point ¢5 . These two
populations are arbitrary except that f(6.) # 0, g(¢s) = 0 and both f/(8.), g'(¢s) exist and
are continuous in the vicinity of the specified points. This paper presents significance
tests for 6, — ¢g which are based on large samples from these populations. The exact signifi-
cance level of a test is not known but its value is bounded within reasonably close limits
(asymptotically). Efficiency properties of these tests (compared to the corresponding
noncentral ¢-tests) are investigated for the case in which both populations are normal
and the ratio of variances is known. Results are also derived for simultaneously testing
6. — ¢p and f(6.)/g(¢s). These tests have known significance levels (asymptotically). A
particular application of tests of this type occurs when it is desired to test whether two
samples came from the same population and agreement of the two populations in a specified
region is to be emphasized. For this special case, the significance levels of the resulting
tests are reasonably accurate for moderate as well as large sized samples.

18. On the Distribution of Wald’s Classification Statistic. H. L. HARTER,
Michigan State College, East Lansing.

A study is made of the distribution of the classification statistic introduced by Wald.
The exact distribution of V in the univariate case, as obtained by the use of characteristic
functions and contour integration, is given for both degenerate and non-degenerate cases.
The problem of classifying an individual into one or the other of two populations, using
the statistic V, is discussed. In the multivariate case, examples are given of the distribu-
tion of an approximation to V suggested by Wald. The procedure here consists integrating
out two variables from the joint distribution of three variables to find the distribution of
the third. Four cases arise, depending upon whether the sample size and the number of
variates are even, or odd. Since this approximation is valid only for large samples, an at-
tempt is made to find an approximation which is asymptotically equivalent to it as the
sample size increases, but which is valid also for small samples. Results are given for a
sampling experiment performed to determine an empirical distribution of V for a specific
small sampling case, using a population of 10,000 pieces modeled after Shewhart’s normal
bowl. Obstacles in the path of practical applications are discussed.

19. Analysis of Extreme Values. W. J. Dixon, University of Oregon, Eugene.

Consider a population N(u, ¢2) contaminated by introducing a certain proportion of
values from a population N (u + Ae, 62) or N (u, A%?). The performance of various statistics
for discovering these contaminators is assessed by sampling methods for samples of size 5
and 15. (This research was sponsored by the Office of Naval Research).
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20. A Note On The Variance Of Truncated Normal Distributions. A. C. ConeN,
JR., The University of Georgia, Athens.

Formulas are derived whereby the variance of truncated normal distributions can read-
ily be computed with the aid of an ordinary table of areas and ordinates of the normal
frequency function. These results are applicable to certain tolerance problems involved
in Statistical Quality Control. Their use will enable one to make computations required in
solving such problems without resorting to XKarl Pearson’s relatively inaccessible tables
of “Values of the Incomplete Normal Moment Functions’’.

21. Some Estimates and Tests Based on the r Smallest Values in a Sample
(By Title). J. E. WaLsa, The Rand Corporation, Santa Monica, Calif.

Let us consider a situation where only the r smallest values of sample of size n are avail-
able. This paper investigates the case where n is large and r is of the form pn + 0(+/n).
Properties of some well known estimates and tests of the 100p% population point (based
on statistics of the type used for the sign test) are investigated. If the sample is from a
normal population, these nonparametric results have high efficiencies for small values of
p (at least 959, if p < 1/10). The other investigations are restricted to the case of a nor-
mal population. Asymptotically “‘best’ estimates and tests of the population percentage
points are derived for the case where the population variance is known. If the population
variance is unknown, asymptotically most efficient estimates and tests can be obtained
for the smaller population percentage points by suitable choices of p and 0(+/n). The
results of the paper have application in the field of life testing. There the r smallest sample
values can be obtained without the necessity of obtaining the remaining sample values.
By starting with a larger number of units but stopping the experiment when only a small
percentage have ‘‘died”’, it is often possible to obtain the same amount of ‘‘information’’
with a substantial saving in cost and time over that required by starting with a smaller
number of units but continuing until all have ‘“‘died”’.

22. Some Comments on the Efficiency of Significance Tests (By Title) J. E.
Warsa, The Rand Corporation, Santa Monica, Calif.

A method sometimes used to measure the efficiency of a significance test consists in
associating a statistic with the test and defining the efficiency of the test to be the effi-
ciency of this statistic considered as an estimate. This paper investigatés the power func-
tion implications of this method of defining the efficiency of a test. Examples are presented
which show that an estimate efficiency of 100E%, does not necessarily imply that the corre-
sponding most powerful test based on 100E9, as many sample values has approximately
the same power function as the given test (for the admissible set of alternative hypothe-
ses). In several of the examples it was found that estimate efficiency makes no allowance
for the effect of significance level while the relationship between the power functions of
the given test and the corresponding most powerful test changes noticeably with respect
to significance level. Some of these examples are non-asymptotic while others
are asymptotic. However, results are obtained for the asymptotic case which indicate that
this equality of power functions does hold for a rather broad class of significance tests if
the pertinent statistics have distributions which are asymptotically normal.

23. Application of Sequential Sampling Method to Check the Accuracy of a
Perpetual Inventory Record. JoserH B. JEmMing, New York.

The problem of checking the continuing property records of a large utility company is handled
by an application of the sequential sampling method as developed by the Statistical Research Group,
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Columbia University. Without the application of a sampling procedure the problem can only be
solved either by a complete physical inventory which is very costly, or by a cycle check which takes
many years to complete. By use of the sequential sampling method, results of desired accuracy are
obtained quickly and at very low cost since an extremely small percentage of field inspection for the
mass property accounts of any large utility produces satisfactory conclusions.

——
NEWS AND NOTICES
Readers are invited to submit to the Secretary of the Institute news items of interest.
Personal Items

Dr. Ralph A. Bradley accepted an appointment as Assistant Professor in the
Mathematics Department of McGill University, Montreal, Canada after re-
ceiving his Ph.D. in mathematical statistics at the University of North Carolina
in June, 1949.

Mr. Fred J. Clark, Jr. received his master of science degree in mathematics
from the University of Illinois in August, 1949 and is now employed by the Uni-
versity of California at the Sandia Laboratory in Albuquerque, New Mexico.

Professor J. L. Doob is on leave from the University of Illinois to teach at Cor-
nell University for the academic year 1949-1950.

Mark W. Eudey obtained his Ph.D. degree in statistics at the University of
California, Berkeley, and is now Vice President of California Municipal Statis-
tics, Inc.

Dr. Joseph L. Hodges, Jr. has been promoted to Assistant Professor and Re-
search Associate at the Statistical Laboratory, University of California, Berkeley.

Professor Paul Horst, formerly of the Department of Psychology, University of
Washington, is now Director of Research at the Educational Testing Service,
Princeton, New Jersey.

Dr. Fred C. Leone, formerly an Instructor and a Research Fellow at Purdue
University, has been appointed Instructor in the Mathematics Department and
Director of the Statistical Laboratory at the Case Institute of Technology.

Mr. Fred W. Lott, who has been studying at the University of Michigan for
his Ph.D., has accepted an assistant professorship at Iowa State Teachers College,
Cedar Falls, Iowa.

Dr. Francis McIntyre has resigned as Director of Export Control, Office of
International Trade, U. S. Department of Commerce, Washington, D. C. to
accept a post as Director of Economic Research, California Texas Oil Co., 551
Fifth Avenue, New York, New York.

Mr. R. B. Murphy, who has been a graduate student at Princeton University
has accepted an instructorship in the Mathematics Department of Carnegie In-
stitute of Technology.

Professor Jerzy Neyman, Director of the Statistical Laboratory, University of
California at Berkeley, will be on sabbatical leave for the Spring Semester, 1950.

Mr. Monroe L. Norden, formerly of the Glenn L. Martin Co., is now a Mathe-
matical Statistician with the Operations Research Office, Johns Hopkins Uni-
versity, Ft. Lesley, J. McNair, Washington 25, D. C.




