DISTRIBUTION OF MAXIMUM AND MINIMUM FREQUENCIES IN A
SAMPLE DRAWN FROM A MULTINOMIAL DISTRIBUTION

By RoBERT E. GREENWOOD AND MARK O. GLASGOW
University of Texas

1. Introduction. In this paper, the expected values

max
E [min (nl, Ngy s+, nz):l
N! [max

min

(1.1)
ny_ _ng nk

(nl,nz,-'-,nz)]-px P2t D

nitnot--onp=N 71:1!"?/2!' . -'n,k!

will be studied. The quantities {n;}, 1 = 1, 2, --- , k, are understood to be
non-negative integers, and the quantities {p;} are non-negative probabilities,
Zps = 1. Also, I £ k. Form (1.1) will be evaluated for the binomial case I = k
= 2 and for the special trinomial case p; = p, withl = 2, k = 3.

2. Binomial distribution. The evaluations for the expected values in the
binomial case can be given explicitly in terms of the incomplete Beta function.
This function may be defined by the relation

k
@) L -kt =2 (M) a - e,

=

whence

L, (k+1,n—k) = }": (f) 1 —- 9" ¢

r=k+1

It is seen that
(2.2) I(n—Fkk+ 1)+ L ok+1,n—k)=1.

For the binomial case, n. = N — n; and p, = 1 — p;, and thus instead of
(n1, ne) and (p;, p2) one may use (n, N — n) and (p, 1 — p) without any sub-
seripts and without sacrifice of clarity. This will be done in some instances in what
follows. The evaluation of

N
max _ N\.| max _ ngqy . \N-n
0y B2 )| = 2 (n) |25, w |9 - p
is slightly different for the two cases N odd and N even.

For N odd, and for the minimum form, the summation may be written in two

parts, (a) and (b),

(a) 0<ncZx
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y
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in which range min (n, N — n) = n, and

N +1

(b) .

A

n £ N,

in which range min (n, N — n) = N — n. In the (a) part summation one gets

(N=1)/2 (N=1)/2 _
2. (N) np"(l — )V = 3 (N_ 1) Npp*™(1 — p)*™*

n=0 n n=1 n
(N—Zs)lz (N -1

r

N +1 N——l)

= Np ) p’(l — p)"*7 = Npl, <———2—, —5

r=0

In the (b) part summation one gets

ud N) n N—n = <N - 1)
— 1 — —3
na(NZ+1)/2 (n (N n)p ( p) (N+Zl)/2 n

‘N1 — pp"(1 — p)"™™7' = N1 — P)Ip(

N+1N——1)
2 ' 2 )

Similar algebraic manipulations, supplemented by symmetry, can be used to
effect the evaluations tabulated below.
For N odd there result the forms

E[min (n,, no)] = Npli_, <Z% , N 2_ 1)
+ya - pr (YL YY),
(2.4)
E[max (ni, ns)] = Npl, (Z%_—l, E-gﬁ—l>
N—-1N 1
+ NQ - p)Il_,,( L )

For N even there result the forms

N N

Efmin (u, n)] = Nplo_, (5, 5) + N - pI, (5 +1,

2.5)

=

=2 =
|

~

Elmax (n1, n2)] = Npl, E, E) + N1 — p)—, E -1,= + 1).
2° 2 2 2
For this simple binomial case, max (n1 , n;) + min (7, ns) = N and linearity
in the expected value operator used in (2.3) preserves this relation, so that one
obtains
(2.6) E[min (n;, n2)] + E[max (n;, n:)] = N.

Thus (2.6) and (2.2) could have been used in evaluating some of the forms above,
or can be used as a check on the evaluations.
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To compute the variance

@) o) = L BE® _ gy (py
it will be convenient to note that for the binomial case
(2.8) 0'12nax = O':uin
where
- 2
(29) A 02(ng =FE [13;? (n?, ng)tl - {E [Ilfna;( (n17 7112)]} )

and where because of the non-negative character of n; and n,

B [{ﬁ‘j (s, n2>}2] - B[, m]

To prove (2.8), note that for this binomial case
{max(ny , ns) — Elmax(m, )]}’ = {min(m, ns) — Elmin(n: , m)]}",

and thus each term for o%.x has its counterpart for o%, when using the first part
of (2.7) to compute these variances, and hence (2.8) must be true.
Defining o® as the common value, one gets

20'2 = Ufnax + G%uin
E[max (n}, n3)] + E[min (i, n3)] — {E[max (n, n9)]}?

— {E[min (n1, m)]}%

(2.10)

The value of the sum
E[max (n] , n3)] + E[min (ni , n3)]

is somewhat easier to obtain than that of either part. For, max (ni , n3) is one
of the integers (n} , n3) and min (ni, n3) is the other integer. Linearity in the

expected value form then gives
@11) Elmax (n , n3)] + Elmin (n} , n3)] = B[’ + (N — n)’]
' = N’ + 2Np(l — p) + N*(L — p)%,

a relation which is similar to (2.6).
Likewise one gets

{E[max (m , n2)]}* + {Elmin (n1, n2)]}?
= {E[max (1, ns)] + Elmin (n, n)]}*
—2E[max (1, mo)]E[min (n:, ng)l

= N? — 2E[max (n1, no)]E[min (n; , n)].

(2.12)
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Substituting the results of (2.11) and (2.12) into (2.10), and solving for ¢* one
gets
¢® = Elmax (ny, n)]E[min (n, , n2)] — NV — 1)p(l — p)
E[max (ny, m)[{N — E[max (n;, n:)]} — NV — L)p(1 — p)
Elmin (n;, n)|[{N — E[min (n1, n2)]} — N(N — )p(1 — p).

i

(2.13)

If one desires, one can make independent evaluations of E[max (n] , n3)] and
E[min (n} , n3)] and compute the variances from relation (2.9). Such evaluations
bring into play the incomplete Beta functions at four different sets of values,
with separate sets for N odd and N even. Relations (2.13) seem preferable to
this suggested “strong-arm’’ procedure. A proof of relation (2.8) by this means
seems to be unduly algebraically complicated.

3. Normal approximation to the binomial distribution. If numerical values for
large N are desired (beyond the range of tabulated values of the incomplete
Beta Function) an approximation based on the normal distribution may be used.
Let

n = Np, + =,
3.1)
ne=N—n=N1-—m) — 2,

where the subscripts may be dropped when not needed for clarity.
Then one has

max

(3.2) E [m?x (na, nz):l ~ fw [min @+ Np, N(1L — p) — x)]
. min -

V2rNp(l — p)

o (gwp =) %

To evaluate the minimum approximation, note that there are two ranges

(a) —w<x<¥—Np,

in which range min (z + Np, N(1 — p) — z) = ¢ + Np,

(b) N <o<a

in which range min (x + Np, N(1 — p) — z) = N(1 — p) — z. Defining

7o (-5) ¢
v% exp 5 X,

3.3) AQ) = [ :
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a tabulated function, the integrations may be evaluated as

Elmin (m, ng)] = NpA(M) + N(L = p)[1 — AQD]
- \/2Np<1 =) exp [—N(l - 2,,)2]’

(3.4) 8p(1 — p)
Elmax (m, m)] = N(1 — p)A(M) + Npll — A(M)]
ONp(1 — p) —N(1 — 2p)°
+\/ ™ eXp[ 8p(1 — p) ]’
where
- N/2 — Np
M VNpd — p)°

Note also that (2.6) holds for these approximate evaluations.

For the variance, approximations (3.4) may be used in relations (2.13). Or,
alternately, the variances may be computed by ‘‘strong-arm” methods using
the definition (2.9). In this case, using the averaging defined implicitly by (2.10)
one gets the evaluation

o' = NAM)IL — AN — 2p° 4+ Np(1 — p)

ONA(1 — ) 2
o0 st D o =]
_2Np(l —p) _ [=NQ — 2p)°
- e“’[ 4p(1'_—'p‘)‘]'

It would seem preferable to use relations (2.13) rather than the above, for that
reason the evaluation of forms (2.9) have not been included here.

4. Trinomial distributions. The form

ax N! max n1 e ma
o (m,m) | = Y o (m, me) 1 D2 D3
n ’ :' n1+nzZ+n3=N n1lnging! [mm > P1 p2 P

m
m

41) E [

may be approximated, for large N, by the bivariate normal distribution. Sup-
pose two attributes P (and not P = P) and R (and not R = R) are being ob-
served in a distribution. Then the four possible outcomes of an experiment
could be represented as the categories PR, PR, PR, PR with respective probabil-
itiesa, b, ¢,d;a + b 4+ ¢ + d = 1. In such a situation, for large N, one may use
a bivariate normal distribution as a limiting form of the above described bi-
variate binomial distribution, or multinomial distribution with four categories.
If the probability of one category, say PR, is zero, the bivariate normal
distribution can be regarded as a limiting form of a trinomial distribution.
Indeed, defining

m — Npi | . ne — Nps
Vp,(1 — p’ Wp,(1 — p)1*’
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the bivariate normal distribution takes the form [1]

1 1
(4.3) dF = or(l — Ot OXP {— 204 = (@} — 2rzizs 4 xg)} dzy dx. ,
where

—e < 21,0 < o,

T=-[ P P2 ]*.
(1 = p)(1 — po)

The expected values are then given approximately by

w4 B2 s | = [ ][ G, | .

‘max

For the special case p1 = p., evaluations have been made of E[min ( 71 ,ns)]
by the authors. For the finite summation (4.1), powers of N less than the one-
half power were neglected, and the values

3
E[mln (72,1 , 77/2)] = Np - (Z%P) ’

4.5) s
Np
Elmax (n1,n9)] = Np + <7)
were obtained.

For the integral case, again for p; = p. = p and hence for r = —p/(1 — p),
the evaluation proceeds as follows. In virtue of (4.2) and (4.3)

Elmin (m, n)] = Np + Vp1 — ) [ i [ " Imin (1, )] dF
(4.6) o

= Np+ Wpt = pF [ [ fmin @ — 2, O] aF.
It is convenient to introduce a rotation of axes in order to evaluate integral
(4.6). Indeed, rotation through /4 radians will give
[} Y2

xl = =T -
V2 A2
4.7)
LY Y2
w=V2t Ve
with
2 2p 2 2 1 2 (1 — 2p>
(4.8) .l/1+l_p$1$2+12—y1<m>+y2<1_p ’
(4.9) min (x; — 2, 0) = min (—y,\/2, 0),
(4.10) g =@,y

oy, y)
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Thus integral (4.6) becomes

Elmin (n1, ny)]

-+ [N T

(4.11) "exp [_ : (4 -p <1 :? P + v (11 —__ 2;)))] min (—y2\/2, 0) dy1dy:
_ Np(l — p)’TF1
“N”“L[z(l—zp)] -

{fo ~ Yz exp [ (1 —p) 5 P) ]dyz} dy -

- 2p

As indicated above, it is convenient to consider the form as an iterated integral,
and integrate first with respect to 7, . The evaluation of (4.11) presents no seri-
ous difficulties,

3 3 ®
Elmin (ni, ns)] = Np — []\;1(71(1;—2;’)) ] (1 1_ D) [_

(4.12) -exp [— (—12—;’—)) yl] i

(1
E}
™

3
Elmax (n1, ns)] = Np + @g)

Likewise

Note that these values are the same as those obtained from the finite summation
form (4.1), as given by (4.5).
To evaluate the variance

(4.13) ot = E [ﬁf‘;‘ (n?, n2)] {Np 4 (1\;1»)}

a finite summation form similar to (4.1) or an integral form similar to (4.4) may
be used.

In case the integral form is used, it is convenient to introduce the variables
z; and x, as defined by (4.2). One then gets

Elmin (ni, n3)] = N°p* + Np(l — p)

H ¥
~E[min(x? + 2 l:—ivﬁ—] T ;xg + 2 I: Np ] xz)]
1 -9 1—09p

= N°p* + Np(1 — p) + Np(lL — p)

-E l:min (xf — 24 2 [1N P:l (21 — 20); O)]

(4.14)




MAXIMTUM AND MINIMUM FREQUENCIES 423

in which one integratior over the whole space has been carried out. Rotating
axes as per (4.7) one gets

E[min (ni, n3)] = N>+ Np(1 — p) + 2Np(1l — p)

(4.15) , E[min (_ e — [ lg_zi_gp]* Yo ;0)].

In evaluating this last expected value form, the region of integration may be con-
sidered as a sum of separate regions. Over some regions the integrand is zero,
in other regions the non-negative product

w o+ [P5]]

is the integrand and this condition gives
j?/‘z 0, (42 <0,

2Np and l: 2Np :|
\ [1 - p] iyl 1—1p

as the regions of integration with the non-negative product as integrand.

Since the assumption that N is large has already been made, it is convenient
to approximate further here and assume [2Np/(1 — p)]* is large, and in particular
to assume that integration from —[2Np/(1 — p)]% to + « is equal to integra-
tion from — « to + « for the integrand under consideration and for iterated
integration with respect to the variable y; .

Remark: An equivalent assumption is needed in the finite summation case
when approximating (Np)! by the use of Stirling’s formula.

Thus one gets (since one of the above regions of integration is to be neglected)

o[ {on(oe [25]) ]
=B LI (o 22])

(4.16) - exp {2_(—1(1_——22—; -4 5 ) ye} dyz] dy:

_ . —1 f“’ 2Np D [—(1—@ ]
" (=2 L <y1 [ p) )P 2T =g Y
-5 (%)
=1
Collecting results from (4.13), (4.15) and (4.16) one obtains
(4.17) oain = Np <1 —p— ;1r>
By a similar procedure, one may compute also that

(4.18) 0hax = Np <1 —p— 1—1r>

1%
1A

lIV
ll/\

11
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For this three category case, the proof used to obtain relation (2.8) is no longer
applicable, yet the relation omin = otax still holds for the approximating rela-
tions given above.

6. Conclusion. Since the normal distribution was used in some instances to
obtain approximations for the binomial and multinomial distributions, many
of the maximum and minimum relations stated as approximations for the multi-
nomial are exact for the appropriate normal distribution.

No convenient formulation was found for the general trinomial case (p:,
P2, p; unequal) similar to relations (4.5), (4.17), and (4.18).

As possible applications of the general solution of this problem, the referee
has kindly supplied the authors with a reference of Guttman [2]. Sampling
theory provided by the general solution to this problem could be used in connec-
tion with Guttman’s reliability coefficient.
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