ON A PROBLEM IN THE THEORY OF k POPULATIONS'

By RagHU RAJ BAHADUR
University of North Carolina

1. Summary. In two recent papers, Paulson [1] and Mosteller [2] have called
attention to several unsolved problems in k-sample theory. A problem which is
typical of the ones considered in this paper is as follows.

Let my, m, -+, m be a set of normal populations, 7; having an unknown
mean m; and variance ¢", G(z, 6;) being the distribution function which char-
acterizes 7; . Samples of equal size are drawn from each population, X; being
the sample means, and S° the estimate of o” obtained. The problem is to construct
a suitable decision rule d = d({X’ )5 8% to select one or more populations, the
object being to minimize the expected value of the random distribution function

Gz |s(@) = Z:l Z:d) - G(z, 6)) ;l Z(d),

where Z;(d) = 11if = is selected by d, and = 0 otherwise. It is shown that under
the restriction of impartial decision, the rule dx = “Always select only the popu-
lation corresponding to the greatest X,;”” cannot be improved, no matter what
or the true parameter values may be. It follows (i) that dj is the uniformly best
decision rule in the class of impartial decision rules for all weight functions of type

k k
W = max {m;} — (Z ami /| 2 z,~> )
7 7==1 =1

and (ii) that the customary F and ¢ tests of analysis of variance are not relevant
to the problem.

This result is an application of Theorem 1 which applies to a number of similar
problems concerning % populations, especially when the populations admit
sufficient statistics for their parameters. Two examples of statistical applications
are given in Section 6.

2. Introduction. It has been recognized for some time that the classical
theory of statistical inference does not provide direct answers to many problems
which are of great interest in the applications. One of them, which arises in
the theory of samples from % populations, is what Mosteller has called ‘“‘the
problem of the greatest one.” The word “population” is used here for a process,
7(6) say, which generates independent random variables X;, X,, -+, each X
having the same distribution function P(X < z) = G(z, 6) say, and a set of X’s

1 This paper is based on a thesis submitted to the Department of Mathematical Stat-
isties, University of North Carolina, in partial fulfilment of the requirements for the
Ph. D. degree. This work was sponsored by the Office of Naval Research.
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PROBLEM OF k POPULATIONS 363

which have been generated by = is called a sample from the population. We shall
describe the problem, as also the formulation adopted in the following section,
in terms of two special cases. These cases occur when the k¥ given populations

m, w2, -+ , 7 are such that m; is characterized by the distribution function
Gz, 0;) = h(x —_. bi), 0; = (b, ¢),¢i >0,7=1,2,---, k, where h(z) isan

absolutely continuous non-decreasing function with h(— ) = 0, h(4+ o) = 1.
Such sets of populations appear frequently in statistical theory and practice, a
given set of normal, or rectangular, or gamma type populations being familiar
instances.

Case 1. Let X,;,7= 1,2, ---, n be a sample from the population =, ¢ =

1, 2, --- , k where =; is characterized by the distribution function h(x —c bi),

b; being unknown, and suppose that the statistician is asked to select the popu-
lation which he thinks has the greatest b;, but is allowed to select more than
one population if (as a consequence, say, of “insignificant’” outcomes of tests of
differences between populations) he does not feel confident enough to select only
one. This situation will oceur if, for example, the X,;’s are observed yields in an
agricultural experiment in which each of & varieties has been replaced n times,
the yield with variety m; being normally distributed with unknown mean m; and
variance ¢’, and the statistician is asked to recommend one or more varieties
for general use. (Cf. Example 1 in Section 6.)

CasE 2. Suppose now that the X,;s are samples from populations =; char-

z— b

i

acterized by distribution functions h( >, ¢; > O unknown, 7 =1,2,--, k,

and the statistician is asked to select the population which he thinks has the
greatest 1/c; , but is allowed to select more than one population.” This situation
will oceur if, for instance, the 7; are factories producing an article having a numeri-

cal quality characteristic X, h(x b) being the distribution function of X in the

product of ; , and the statistician is required to assign production to one or
more factories, the object being to obtain product of stable quality, b being the
standard characteristic.

It is clear that the usual statistical theory, which confines itself to estimation
of parameters 6; and testing of hypotheses of the kind Hy(b; = constant), is
inadequate to deal with problems of this sort, where a definite course of action is
required of the statistician. It is hardly necessary to add that selection isan im-
portant problem in the applications, and the testing of hypotheses is often an
indirect attempt to justify selection. In accordance with Wald’s formulation of

2 There is no essential difference between the problem of the greatest one and the problem
of the least one. In order to avoid trivial complications, the terminology of the former will
be used wherever possible.
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the problem of statistical inference,’ we proceed to consider explicitly the purpose
of selection and the “loss” involved in making any particular selection.

3. A class of weight functions. Let =1, 72, - -+, m be a given set of popula-
tions, m; being characterized by the distribution function G(z, 6;), and let us
denote any particular selection, say s, by indicator variables z; , 2., - - - , 2z where
z; = 11if 7, is selected and = 0 otherwise. Since any meaningful selection must
concern itself with the random variables generated by the populations selected,
consider the function G(z | s) = D %y 2:G(x, 6,)/D et 2 . G(z | s) is a distribu-
tion function, and provides a logical and direct overall picture of the effect of
making -the selection s, since no distinction is made between the populations
selected. In immediate generalization, we define a ‘“‘selection” s to be a vector,
s = (D, P2, -+, ) withp; >0, 251p; = 1,and put Gz | s) = 25
p:G(z, 0;). Roughly speaking, G(z | s) is the distribution function which charac-
terizes the mixed population obtained if sampling rates p;, p2, -+, Dx are
assigned to m;, m, -+, m respectively, p, = O corresponding to rejection of
- . Henceforth, a selection vector will be called a decision.

Now, if each of the G(z, 8;)’s were known, an appropriate decision s could be
chosen without resort to sampling. If not, the statistician must construct (in
advance) and use an s-valued function of the sample values. Such a function,
say d, is called a statistical decision function or decision rule. The decision s
according to d, say s(d) = (p(d), p2(d), - -+, pe(d)), is in general a random
vector, so that for any fixed z, G(x | s(d)) is a random variable. Consider the
distribution function H(z | d) = E[G(z | s(d))] = 1 Gz, 0:)E[p«(d)], where
E denotes the expectation operator. It represents the average overall effect of
using the decision rule d, and so affords a reasonable description of the perform-
ance of d. Clearly, the problem is to construct d in such a way that H(z | d) has
desirable properties.

The “desirable properties” will depend, of course, on the particular problem
being considered. Returning to our two cases, denote the arbitrary but given
set of all possible parameter points w = (61, 62, -+, 6:) by @, and let D
be a given class of decision rules d = d({X;;}). Then, in Case 1 we wish to
choose d* e D such that H(x | d*) = inf H(zx | d) for every z and every w € Q. In

€D

Case 2, we wish to choose d* so that for every z and every » we have
H(x | d*) = inf H(z | d) whenever < b, and = sup H(x | d) whenever 2> b.
deD deD

These requirements are very strong, and in general no such d* will exist without
heavy restrictions on ¢ and on D. (Cf. however the corollary to Theorem 1. It
will be found that in a number of cases no restrictions on  are required provided
that D is the class defined there.) For some purposes, it may be sufficient to
consider functionals of H(z | d). The functionals which are most useful in the

applications are the moments. Thus, one may wish to find d* such that a(d*) =
4o

sup a(d), where a(d) = g(x)dH (z | d), g(x) being some appropriate function.
deD ]

3 See, for example, [3], Chapter VI.
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For example, in Case 1 we may take g(z) = x. Then a(d) is the mean of a random
variable having H(z | d) for its distribution function, and constructing a suitable
d to maximize a(d) is ‘‘the problem of the greatest mean.” Again, in Case 2 we
may take g(z) = —(z— b)?, and in that case maximizing «(d) would be ‘“the
problem of the smallest variance.”*

In terms of mixtures of distributions, H(z | d) is the mixture of G(z | s) with
respect to §, where ¢ is the probability measure induced by the decision rule d
on the class of Borel sets in the space of all possible decisions s. It follows by
the use of Theorem 5 in [4], or otherwise dlrectly, that max1mlzmg a(d) is equiva-

lent to maximizing the expected value () of Z Pi f g(x)dG(z, 6;). Writing

400
gi = f g(@)dG(z, 6;), one may say that the object is to construct d in such
a way that the expected value (§) of the ‘“weight function”

W(w, 8) = max {g:} sz gs

is minimized for every w. W represents the ‘“loss” incurred by choosing the de-
cision s when the true parameter point is w. It will be seen that W defined accord-
ing to (A) in Section 5 includes essentially all weight functions which are likely
to be of interest in the type of problem considered in this paper.

We have so far not emphasized the obvious fact that the probability measure &
which is induced by d on the space of decisions will in general depend on the
unknown parameter point w. Therefore, the expected value (§) of W is to be
written as E[W (v, s(d)) | @] = r(d | @) say. Following the usual terminology, we
shall call 7(d | w) the risk function of the rule d, and shall say that d* e¢ D is the
uniformly best rule in the class D if r(d* | w) = 3nf r(d | @) for all w € Q.

€D

4. A class of decision rules. The class of decision rules to which we shall
confine ourself is rather limited, and may be described as follows, with reference
to the previous sections:

(i) Given independent random variables {X,;},j= 1,2, --- ,n;7 = 1,2, --- ,k
from the & populations = , let

X; = d)(X’ﬂ) Xﬂ, Tty X‘iﬂ)y 1= 17 2’ R kand ¥ = I)b({XlJ}),

where X;, X;, ---, X;; YVis an inaependent set, and the X,’s have fre-
quency functions. The choice of ¢ and ¥ will depend upon particular cases: in
Case 1, Xy, -+, X ; Y will be statistics relevant to the estimation of

* An unpublished theorem of Herbert Robbins insures that if a d* satisfies the strong
requirements of the preceding paragraph, it will also maximize all functionals a(d) cor-
responding to such functions g(x).
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by, by, ---, bx ; ¢ respectively, and in Case 2 they will be relevant to
C1,Ca, o+, ;b0

(ii) Given the statistics {X.}; ¥, D(¢; ¢) is the class of all impartial decision
rules which are based on them. A decision rule d = d({X}; Y) is said to be
impartial if it has the following structure. Let Xy < X@ < - < X
be the ordered X,’s. Then d defines non-negative random variables X\;(X ¢, ,
Xo, ,Xw;Y),j=1,2 -,k such that D51 A\; = 1, and \; 1s the
proportion p(d) which is assigned by d to the 7 corresponding to X, . We
use the term “impartial” for such decision rules because they determine the
proportions [A; , A2, - -+, A without regard to which X belongs to which
population, and then assign these proportions in strict order of the X.’s.

We shall specify the intuitively plausible class of impartial decision rules for the

important normal cases, and give a few instances of such rules.

Suppose first that the X;;’s are from normal populations having means m;
and a common variance o°, and that we are interested in the problem of the
greatest mean. D is then the class of all impartial decision rules which are based
on the statistics

Xi=X:= 2 Xu/n, =12, k;
=1

k n
Y=8= Z; Zl X5 — XDk (n — 1).

J=L1 3=
The numerical factors are of no importance, and may be omitted (Cf. footnote 4.
See also Example 2 in Section 6, where such factors have been omitted for con-
venience). A rather simple member of D is the rule Ny = 1/3, Ay, = 2/3] i.e.
“Always assign the proportion 2/3 to the population which has the greatest
X, and the proportion 1/3 to the population with the second greatest.” In using
this rule although the A\;’s remain constant from sample to sample, the decision
s(d) is a random vector. In general, however, the A\;’s will themselves be random
variables. This is the case if, for instance, one insists on utilising the standard
test of differences between populations, and uses the impartial rule “Perform the
F test of Hy(m; = constant) at the five per cent level. If Hy is rejected, assign
the proportion 1 to the population which has the greatest X;. If not, assign
equal proportions to all populations for which X; > > %1 X:/k, and zero propor-
tions to the rest.” Another type of impartial decision rule according to which the
\;’s are random variables will be described at the end of Example 1 in the next
section. Now, it is (intuitively) clear that if the sample size n is indefinitely
large, the rule A\ = 1], i.e., “Always assign the proportion 1 to the population

6 It is unnecessary to specify here the exact relation between the statistics and the
parameters: (a) the definition of the parameter which determines a distribution function
G(x, 6) is more or less arbitrary, e.g., instead of writing 6 = (b, ¢) we may write 8 =
(b3/c, cosh c), and (b) D(¢1; ¥1) = D(¢s; ¥2), provided that ¢. = f(¢1), 2 = g(¥1), where
f(zx), g(z) are strictly monotonic functions. It will be seen that Theorem 1 is invariant under
such transformations of parameters and/or of statistics.
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with the greatest X,”, cannot be improved, no matter what the true parameter
values may be. Our main result (Theorem 1) asserts that the statement is in
fact valid for any n, provided that one restricts oneself to the class of impartial
decision rules.

In a similar way, if the X;;’s are from normal populations having a common
mean m and variances o5 , D would be the class of all impartial decision rules
which are based on the statistics

j=

k n
Y =22 Xi/kn,
1

i=1 j=
and analogous remarks will apply to this case.

It should be observed that in a given case the appropriate statistics {X.}; ¥
may not be as obvious as in the case of populations like the normal which admit
sufficient statistics for their parameters. This real difficulty is not to be confused
with the ambiguities mentioned in footnote 4. Furthermore, given the X.’s
there may notexist ¥ = ¢({X;}) which isindependent of the X/’s: weshall then
assume, without invalidating our result, that the parameter which Y is supposed
to estimate is known. Theorem 1 becomes operative only after such questions
have been resolved.

5. The uniformly best decision rule. It is convenient to define here some
terms which will be used subsequently without further explanation. All functions
are assumed to be Borel measurable. Sets will be denoted by curly brackets: thus
{f = ¢} is the set on which f = ¢ holds, and {a;} is the set of all a; in question.
“Measure” will refer to ordinary Lebesgue measure in the zy plane.

DeriNiTioN 1. Given k independent random variables X;,¢ = 1,2, --- , k,
such that each X has a frequency function, let Xy, 7 = 1, 2,---, k, be the
ordered set, X ;, being the jth X, in ascending order of magnitude. Then 4,; =
{X: = X}, and a; is the characteristic function of the set 4; , that is, a;; = 1
for any point of A;; and = 0 elsewhere.

Since the Xs have a joint distribution which is absolutely continuous, the
sets A;; are well defined with probability one. Clearly, we have Sk iay =1
for every j and) .1 a;; = 1 for every ¢, with probability one.

DeriniTION 2. Let 8 = (by, by, -+, br) be a vector of real numbers b, ,
ando = (fi,fo, -+ ,fx) avector of real-valued functions f,(x) defined for every
real z. We shall say that ¢ ¢ T(8) if for any r, s = 1,2, - - , k for which b, < b, ,
the set {fr(x)f:(y) < f:(y) fs(z), ¢ < y} is of measure zero.

We require the following

LemMa. Suppose that X1, Xo, -++ , Xi ; Y are independent random variables,
X; having a frequency function fi(z) and that ¢ = (fr, fo, -+, fr) € T(B), where
B = (bi,by, -, bx) with

1 by <by < --r Sbe



368 RAGHU RAJ BAHADUR

Then, for any non-negative random variable X\ = N Xy, Xy, *+, X 3 Y) and
any p,qg,m = 1,2, --- , kwithp < q, we have
k

@ Y By < Y EGa).

i=m T=m

Proor. Since (2) holds trivially if p = ¢ or if m = 1 suppose that p < ¢
k k
and m > 2. Writing B(m, j) = Z i = 1} = Z A;;, (2) is equivalent to

1=m 1=m

f AdP > A dP, and hence to
B(m,q) B(m,p)

3) f ANdP > A dP,
B(m,q) B’ (m, p) B(m,p) B’ (m,q)

where B’ denotes the complement of B, and P the probability measure in (z; ,
Zy, c-, i ; Y) Space.

For any permutation ¢y, --- 4 of 123 --- k, define O@: --- @) =
A:pdip -+ Ay . Clearly, the O’s corresponding to different permutations are
disjoint and each of the sets B(m, ¢)B’(m, p) and B(m, p)B’'(m, q) is the set-
theoretic sum of certain O’s. Now, it is easy to see that

ip=1 or2 ---, orm — 1, and

0 C B(m, ¢ B’(m, p) if and only if
lg=m, orm—+1, -+, ork.

4)
( iy =m, orm+1,---, ork, and
0* C B(m, p)B'(m, q) if and only if .
tq =1, 0or2 ---, orm— 1.
Hence a one-one correspondence between subsets O(7; - - - ) of B(m, ¢)B’(m, p)

and subsets 0* = Oy --- if) of B(m, p)B'(m, q) exists through interchange
of the pth and gth elements of the defining permutations, the other elements
remaining the same. It will be sufficient to prove that if O and O* are any pair of
corresponding subsets, the integral of A\ over O is greater than or equal to its
integral over O%*, for then (3) will follow by addition.

It is clear that for any O,

f )\dP= A(xi‘,xiz,""xik;y)
O (i1t 1k) (21 <Big< oo <Tip}
&
(5) , . [I]l: filz)) dxi] dF (y)

= j; A, tay ooy te; y) [’I‘-Iillfif(tf) dtr:l aF(y),

where R is the domain {t; < t; < --- < &} and F(y) is the distribution function
of Y. Let O and O* be any pair of corresponding subsets. It follows from (5)
that

k

fox ap — [ naP = [ QLTI s:] 1L at aF (),

r#ADp, g r=1
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where
(6) Q=MNt,ta, - ke ;y)[f,-,(t,)f.-,(tq) — fi(to)fiy ()]
From (4) and (1) we have b;, < . Since p < ¢ implies that t; < ¢; over R,

and ¢ € T(B), it follows that the expressmn in square brackets in (6) is (except
perhaps for a set of measure zero) non-negative over R. Since M is also non-nega-
tive, it follows that @ is non-negative over R, and the Lemma is proved.
We shall now state and prove the main result. Note that the statistic Y is not
necessarily real-valued.
TueorewM 1. Suppose that
(A). Qs a given set of points w = (61,02, -+ , 6k). Bw) = (b1, b2, -+, bx)
and y(w) = (g1, g2, - , k) are defined for every w such that b, < b,
implies g, < goforeveryp,q = 1,2, --- , k.

k
Givenans = (p1, D2, *** ,pk)withp.-ZOandEp,-= 1,
t==]

k
W(w, s) = max {g;} — le,-gi.

B). X1, X,, -+, Xk ; Y are independent random variables, each X; having
a frequency functwn f(xy 0i) = fﬁ(x) say, and ¢(°~’) = (fl ’ f2 y " fk)'
(C). D istheclassof all deciston rules d such that

k
d=dXw,Xe,  Xo ;=N\, -, ML\ 2 O,Z;)\,-E 1, and s(d)
J-

k
= (pl(d): p2(d)) R} pk(d)) where pt(d) = Zl Ajaij, 1= L2, k.
J=
Givend e D, r(d | w) = E[W(w, s(d)) | w].
(D). For every w, ¢ € T(g).}
Then, for every w, r(d; | w) = sup r(d | w) and r(dx | @) = inf r(d | ), where
€D deD
d=1[1,00,---,0landdi = [0,0, ---,0,1].
COROLLARY. Suppose that w; , 1 = 1,2, --- | k are populations characterized

by distribution functions G(z, 6;) = h 2= b , ¢i > 0. For any fized x, let

1

Gx|w 8 = gp;G(x, 0;), and H(x|d, w) = E[G(z|w, s(d)) | «].

Case 1. If foreveryw, 1) ci=¢3 = --- = ¢,
(ii) ¢ € T(B), where B = (b1, bz, - -+ , bi),
then, for every w,

H(z|dy, w) = inf H(z | d, ).
deD

CasE 2. If for every w, (i) by= by = -+ = by = b(w), say,
(ii) ¢ e T(ﬂ)) where 8 = (01 3 C2y "0ty Ck))

¢ Note that ¢ ¢ T(—8) is equwa]ent to p*eT'(8), where ¢* = (#¥ ¥, ... . #%) andf}is
the frequency function of X¥ = —X..
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then, for every w,

[inf Hz |d, ) if z < b(w),

JdeD

H(x | d,w) =
132115) H(x|d,w) if 2> blw).

Proor. Choose and fix an arbitrary w ¢ Q. Without loss of generality we may
assume the notation to be so chosen (by simultaneous interchanges of indices ¢
in each of {0:}, {bi}, {g:}, {ps}, {X:}, {fi}, and ey}, 7= 1,2, --- , k) that (1)
holds. It then follows that ;< g, < -+ < gr and we write

(7). gi=q+h+h+ - +h, h>0, i=1,2, -,k

Choose and fix an arbitrary member of the class of impartial decision rules,
say d = A1, Az, -+, M]. We have

k

8) r(d]| e = max {g:} ;J:_l giE\N;aij).
Now
" ?i;_l g:iEM\;ai) = Z:_ (1 + b+ -+ + RIEN;as)
9
=g+ M.Z,;=l [;,. E(Maij)] hm
Since \; = Xy, X, +, Xw 3 Y) > 0, it follows from the Lemma that
(10) Z EQ\jai;) < ;ﬂ E(\;as) for every m and every j,

by writing A = A, , p = 7, and ¢ = kin (2). By using (7), (9) and (10) it follows
that

Z giEM\ai;) < g+ E I:Z Eo\jaik):] hom

1,j=1 m, j=1 =m

(11) =g+ }; }_:m o B (@)
= ;1 g:E(aq).
Therefore, by (8) and (11),
(12) rd]|w > max {g:} Z g:Eay) = r(ds | ),

by definition of dj . The inequality 7(d | w) < r(di | w) follows from (8) and (9)
by a similar use of the Lemma. Since both d € D and » ¢ © are arbitrary, this
completes the proof of Theorem 1.
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The verification of the corollary is as follows. Choose and fix an arbitrary z
. r — bi
and write h ( > = ti(w).

Ci
Case 1. Let y(w) = (1 —t ,1 —t, -+ ,1 — &). Then r(d|w) =
H(z| d, ») — min, {t;}, and it follows from the Theorem that H(z|di,w) =
supaep H(z | d, ) and H(z | di , w) = infaep H(z | d, »), for all w.

(trytay ooy te) if blw) > =,
CasE 2. Let y(w) = .
QA—-t,1—t, +,1—t) otherwise.
[max(t:} — H(z | d, ») if b(w) > z,
Then we have r(d|w) = |7 .
lH (x| d, w) — min {t} otherwise,
inf H(z | d, w) if b(w) > =,
deD
so that Hx|d,w) = )
sup H(z | d, w) otherwise,
deD

and conversely for H(z | di , w), for all .

The preceding proofs suggest that perhaps (D) is not a necessary condition,
but the following theorem for the case of two populations shows that it is indis-
pensable if Theorem 1 is to hold in general.

TaeoreM 2. Suppose that (A4), (B), and (C) hold with k = 2 and 6, , 0, real-
valued, that the set Q of points w = (01, 82) is denumerable, that B(w) = w, that
g1 % ga for any w, and that Y is a fized constant. Let u(w) = min; {6:}, v(w) =
max; {6:}, and defining the sets

R(w) = {f(h, ) ftz ,v) <flt1, ) fta, ), 0<h},
S8w) = {fts, W) flta, ) > fta,») ft2,m), t<b}
in the 1y, tz-plane, put
R*(t1, t;) = 22 R(w),

S*(t, t) = 22 S(w).

Then a uniformly best decision rule in the class D exists if and only if the set R*S*
is of measure zero. Subject to existence, the uniformly best rule, say d*, may be
defined as ‘

g = L0 X, Xa) e B
[0, 1] otherwise.

The proof is quite simple, and will not be given. It is clear that under the
hypotheses of this theorem, the conclusion of Theorem 1 is valid if and only if
the set R* is of measure zero, that is, if and only if condition (D) holds.
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6. Examples and discussion. We begin with two applications of Theorem 1.

ExampLE 1. Suppose that grain is to be raised on a given area, say 4, of land.
k varieties, m , my, -+ , m say, are available, the yields per unit area being
normally distributed with unknown means m; and a common variance o°, also
unknown. A preliminary field experiment (in which n plots of unit area were
assigned to each variety) has been carried out, and {X;}, 7= 1,2, ---, n;
1 =1,2, .-+, kis the set of independent plot-yields obtained. The statistician
is asked to suggest how the available land should be divided between the k
varieties, the object being to make the total expected yield as large as possible.”

Suppose that an area Ap; is assigned to ; ,¢ = 1,2, --- , k, with 2 5y p: = 1.
Then the expected total yield is ) ;; Apam; . Our object is to choose the set
(pr1,p2, -+, Px) = $50 as to minimize the “loss”

k
W(w, 5) = max {Am;} — Z‘i Am;p;.

Since the m;’s are unknown, one must construct an appropriate s-valued func-
tion of the X s, say d, and set s(d) = d({X}). The expected “loss’’ in using
this procedure is given by E[(w, s(d)) | w] = r(d | w), and the problem is to con-
struct a d which makes r(d | w) as small as possible. (See (4) and (C). Here
we have set6;,= (m;,0),0 = (61,02, --- ,0),B8w) = (me ,ms, --- ,my) and
Y (w) = (Aml ’ Ame y T Amk))'

n k n
Let Xz = ZIX”/’/L,l = 1, 2, oty k and Sz = Zl Zl (X” - X,)2/k(n - 1).
Jj= i=1 j=
Since X, X,, .-+, X, ; 8 is a set of sufficient statistics, it is easy to see
by taking conditional expectations that corresponding to any decision rule based
on the X;’s, there exists one defined in terms of the X;’s and S* alone such that
the risk functions r of the two are identically equal for all possible values of
the unknown parameters. Clearly, one may confine oneself to decision rules of
the type d = s({ Xi}; S%). Now, the frequency function of X; is fi(x) =
(n/2r0")"?. expl—n(x — m:)’/20"], and it is readily seen that m, < m, and
z < y imply f.(x)f.(y) > f:(x)f-(y). It follows that in the class of all impartial
procedures which arebased on {X;}; S°, the uniformly best procedure is to assign
the whole area A to the variety with the greatest observed yield. (Note that
by the corollary to Theorem 1, a much stronger result than the one required
here holds. Cf. footnote 3.)
Although Paulson did not set up a weight function in his discussion of the
selection problem for the present case of samples of equal size from % normal
populations having unknown means and a common variance, also unknown, he

7 A double expectation is involved: the expected consequence of a given decision, and
the expected decision in using a particular decision rule. The argument given is justified
since it is assumed that the random variables generated by the =’s subsequent to decision
are independent of the random variables on which decision is based. Cf. Section 3. This
remark applies to Example 2 also.
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gave a class {d.} of decision rules and evaluated some probabilities (P(G;) and

7. [1], pp. 96-97) which suggest that some of the applications he had in mind
are similar to the one given here. In our notation, the rule d, is defined as follows
for any given ¢ > 0.

k

dc=[kla>\2y'°">‘ll]’ where >\j=<Zj EZ;'), j=]_’2’...,k
J=1

1 if Xgy — e(S/vVn) < Xy < Xy,

with Zi = {0 otherwise.

ExamPLE 2. Suppose that a manufactured article has a numerical characteristic
z, and a given article is “defective” if it has an z < a and “acceptable” otherwise,
where a is some constant. A consumer requires a large number (N) of articles,
which can be supplied by each one of k¥ manufacturers =; ,¢ = 1,2, --- , k. The
characteristic (say length) of articles produced by ; is known to have a rectangu-
lar distribution with range from b to b + ¢;, but the ¢;’s are not known. As a
preliminary step, the consumer has obtained samples of » articles from each
manufacturer, and finds the corresponding lengths tobe X;;,j = 1, 2, -« -, »;
1= 1,2, --- , k. The statistician is asked to suggest how the consumer should
order a total of N articles from the ¥ manufacturers.

If a < b, the number of defective articles received by the consumer will be
zero no matter how the order is placed. Suppose therefore that a > b. Then, if
n; articles are ordered from =; with D +; n; = N, the expected number of
defectives equals N — > 5y (n:/N)-g: , where g; = g(c.) and g(t) is given by

. N<1—“;b) if¢>a—b,
g =

0 otherwise.

Writing 8(w) = (c1,¢, ), v(@) = (G1,02, -+ , gr), it is clear that the
expected number of defectives is of the form W(w, s) + h(w), where & () is
independent of s = (ni/N, ne/N, ---, m/N), and W is defined as in (A).

We have now to consider what statistics X; should be used to construct decision
rules. Evidently, we are concerned with a “problem of the greatest c; .”

(a). Assuming » > 1, let X; = max; {X;;} — min; {X;;}. Since the fre-
quency function of X;is f; (x) = »(v — 1)¢i”(c; — )27 if 0 < z < ¢; and zero
elsewhere, it is a simple matter to show that ¢, < ¢, * < y imply f.(x)f.(y) >
fs@)f.(y). It follows that in the class of all impartial rules which are based on
the sample ranges, the uniformly best rule is to order all the N articles from the
manufacturer with the greatest sample range.

(b). It may be objected that since the lower end points of all the distributions
are the same, the use of sample ranges to construct decision rules is not particu-
larly appropriate. Suppose therefore that one takes the statistics X7 =
max; {X,;} — b. The frequency function of X7 isf(z) = »ci’2" "  for0 <z < ¢,
and = 0 elsewhere, and as before, condition (D) holds. Hence the uniformiy
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best impartial procedure in this class is to order all the N articles from the
manufacturer who supplied the article with the greatest length in the whole
sample of kv articles.

It is important to observe that the uniformly best procedures according to
() and (b) are not identical, and choosing between them is outside the scope of
Theorem 1. Note also that the statistics X+ are sufficient for the ¢’s. Therefore,
corresponding to any decision rule there exists a decision rule which is defined in
terms of the X7’s and has the same risk function. In particular, there exists a
decision rule in class (b) which is equivalent to the uniformly best impartial rule
in class (a). It would be interesting to know whether this equivalent rule is also
an impartial one.

The two examples given above are purely illustrative, and the reader will
readily construct others in which the statistician is faced with similar problems of
decision. The second example does not, strictly speaking, belong to Case 2, and
the reader is urged to consider some specific instances of this Case. There are
various modifications of “the problem of the greatest one”” which may be indi-
cated here very briefly. These modifications are introduced by placing restrictions
on the class of possible decisions. For example, in Example 1 the statistician may
be required to select two or more varieties, and to assign proportions of the land
to the varieties which he selects in such a way that no variety takes more than
two-thirds of the available land. In that case, the uniformly best procedure (in
the class of all impartial procedures which are based on the X s and S*) would
be to assign two-thirds of the land to the variety with the greatest observed mean
yield, and the remainder to the variety with the next greatest. The proof is a
slight elaboration of the proof of Theorem 1 and is left to the reader. Again, in
Example 2 the consumer may wish to obtain all the articles which he requires from
some one manufacturer. In that case, assuming that an impartial selection rule
based on the X}’s is to be used, it follows trivially from the case considered
previously that the uniformly best procedure is to select the manufacturer with
the greatest X . This is intuitively obvious, but the obvious requires proof (i.e.
verification of (D)), as may be seen by turning to Example 3.

The intuitive notion referred to above is one which is employed quite fre-
quently in practice. It may be described as follows. Let X, and X; be independent
and similar estimates of unknown parameters m; and m, , and suppose that in a
given instance we have X; > X, . “Then it is more reasonable to suppose that
my > me than to suppose that m; < m;.” Theorem 2 shows that this notion
is well-founded if and only if condition (D) is satisfied, with 8 = (m, , m,). The
condition states essentially that “the likelihood of the greater estimate corre-
sponding to the greater parameter is always > the likelihood of the contrary
event,” and it should be observed that X;, X, being “good’ estimates (e.g.
maximum likelihood estimates) does not ensure that this will be the case. The
following application of Theorem 2 is an illustration of these remarks."

ExampLE 3. Suppose that =; , ¢ = 1, 2 are Cauchy-type populations having
medians m; , and that the set @ of possible points w = (m, , m,) consists of just
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the two points w; = (1, —1) and w, = (—1, 1). X; and X are single observations
from the two populations, and the statistician is required to decide which
population has the greater median.

Here it would be reasonable for the statistician to use a decision rule, say d*,
which minimizes r(d | w) = P(incorrect decision | w, d), where “m; has the
greater median”’ and “r, has the greater median” are the two possible decisions.
That this risk function is included in the scheme described by (A) and (C) may
be seen as follows. Let the only admissible values of s be (1, 0) and (0, 1), cor-
responding to the decisions “m; > m,” and “m; < m,”’ respectively, and setting
B(w) = (my , my), definey (w;) = (1, 0), ¥ (w2) = (0, 1). Then for any d such that
s(d) equals (1, 0) or (0, 1) only, the expected value of W is for either w the
probability of error in using the rule d.

Now, ifd = d(X@ , X@) = [\, \e] is any impartial decision rule, it will equal
either [1, 0] or [0, 1], corresponding to the decisions “the population with the
greater X has the smaller median” and ‘‘the population with the greater X has
the greater median” respectively. Since the frequency function of X; is fi(z) =
1/#[1 4+ (x — m)T, a little calculation shows that in the class of impartial
decision rules a uniformly best one exists, and is given by

d* = [1,0] if X(II)X(2) > 2
[0,1] otherwise.

In conclusion, we remind the reader that although the weight function W
defined according to (A) is general enough to include all problems of the type
considered in this paper, the sampling scheme as also the class of decision rules
to which our results apply is very limited. We have (i) assumed that the samples
from the k populations are all of the same size, and (ii) given no objective criterion
for choosing appropriate statistics, and no justification for the use of impartial
decision rules based on these ‘“appropriate statistics.” In view of the applications,
it would be of interest to extend the general argument of this paper to the
numerous situations where Theorem 1 does not apply or is otherwise unsuitable.

The problem of selection was suggested to the author by Professor Hotelling.
The author would like to acknowledge his indebtedness also to Professor Robbins.
This paper could not have been written without his constant encouragement and
helpful suggestions. '
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