DISTRIBUTIONS RELATED TO COMPARISON OF TWO
MEANS AND TWO REGRESSION COEFFICIENTS

By Urram CHAND!
University of North Carolina

Summary. We consider here the relative merits of different statistics avail-
able for testing two means or two regression coefficients in relation to one-sided
(asymmetric) and two-sided (symmetric) alternatives in case of unequal popula-
tion variances. In so far as the Behrens-Fisher statistic is concerned we confine
ourselves to the consideration of the behavior of its probability of Type I error
in repeated sampling from populations with a fixed value of the unknown ratio
of variances. In connection with the tests between two means, the present
study takes its point of departure from the existing tests and investigates the
question of utilizing an approximately determinate knowledge about the un-
known ratio of variances. In connection with the comparison of two regression
coefficients and also of two linear regression functions, we consider the effect of
two concomitant sources of variation, viz., the unknown ratio of residual variances
and the ratio of the sums of squares of the fixed variates, on the probability of
Type I and Type II errors of certain well known statistics.

1. Introduction. Consider two independent samplesz; - + - 2,1 and zy e x’,,,ﬂ
drawn from two normal populations with means m; and m, , variances o: and o3 .
Let K = oi/o7 . If K is known and m; = ms, , the quantity

i—
e = [S(w — )+ KS@ — ) < L1 )]*
n1 + 7y ' m+ 1" K+ 1)

(t1 is Fisher’s t) is distributed according to ‘“‘Student’s” distribution with n, + n,
d.o.f.” and for the “Student’s” hypothesis Ho:m;, = m, provides a uniformly most
powerful test against an asymmetric alternative Hy:m; > (or <)m, and a
type B test against a symmetric alternative Hy:m; 5 m,. If K is unknown
certain approximate and exact tests have been suggested from time to time to
meet this situation.

Welch [1], [2] using an approximation to the distribution of ¢; was the first
to point out that if K is unknown and we assume it to be equal to unity, then
the probability of Type I error of the f-test is subject to large variations as K
varies from 0 to «. He also pointed out that the statistic

G| Se=2" S -
v = (.’L‘ — X ) [m(nl + 1) 77/2(/”2 + 1):|
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which does not have ‘“Student’s” distribution for K = 1, has the advantage
that its probability of Type I error is subject to less variation with respect to K.
His approximate results were later confirmed by Hsu [3] who obtained the
distribution of quantities u;(=1#;) and us(=¢") and also showed that these tests
are unbiased in the sense of Neyman and Pearson. Hsu concluded on the basis
of his investigations that when the sample sizes are equal and not very small,
we may safely use u;(=u,) as if K were unity. This also had been pointed out
by Welch.

If on the basis of past experience some approximate value k of K were available,
one would like to know if such a choice in some rough neighborhood of K would
in any way improve the claim of #;(=¢x for K = k) for the hypothesis m; = m, .

The distribution of this generic quantity tk< =fhfork=1;=vfork = M)

ny(ng + 1)
will be obtained in Section 2.1. It will be shown that variation in the probability
of Type I error of # with respect to K for any k except when # = v, is essentially
similar in character to that of ¢} [3] and is very sensitive in a neighborhood
of K in which one would very often be interested (Section 2.4). This is also true
of the behavior of the power function of # with respect to K. Consequently a
type of statistic will be unsuitable in general for utilizing an approximately
determinate knowledge of K.

It is not possible to infer directly from Hsu’s work on the relative merits of #
and v in relation to asymmetric aspects of ‘“Student’s” hypothesis. His basic
conclusions as regards unbiasedness and the nature of variations in Type I
error in the symmetric case also hold for the asymmetric case except that the
Type 1 variations in 4 and v are less for asymmetric than for symmetric com-
parisons (Section 2.5 and Table II). Furthermore it appears (Section 2.5 and
Table IIT) that with respect to the variations of K both the asymmetric and
symmetric power functions of ¢ are likely to be more sensitive than those of v.
Since for equal d.o.f. both the asymmetric probability of Type I error and
power function are insensitive to the vagaries of the ‘nuisance’ parameter K,
there is an a fortiori reason for using v(=t) as if K were unity.

Scheffé [4] considered the statistic

L _, ni1+1 (uz _ '17,)2 -1
n + 1)i ’

T

. Ng + 1
and where it is assumed that the variates in each sample have been randomized.
This is essentially a “Student’s” ¢ comparison based on n; d.o.f. and as shown by
Scheffé it is impossible to get a suitable statistic with the i-distribution with
more than n; d.o.f. The statistic » has the ¢-distribution only when K = o (1
_ mng + 1)
d.of.), K = 0(n, d.of.) and K = ralny £ 1)
ny, ne, K and P we can solve P = P(v > t | Ho) for {, and thus indirectly obtain

(equivalent to paired difference ¢ when n, = n,) where u; = x; — (

(ny + ny d.of.). For any given
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from the tabulated values of the ¢-distribution the number of ‘effective’ d.o.f.
which will thus adjust v to any preassigned level of significance. We try to
show in ,Section 2.6 that in situations where some approximate knowledge of K
is available, the statistic » seems to have a decided advantage over any other
statistic having the {-distribution. We show by actual computations that Welch’s
formula [2] provides a conservative estimate for the effective d.o.f. in the light of
which this comparison will be considered.

The Behrens-Fisher fiducial test employing the statistic d [5], [6], which has
essentially the same structural form as v, has given rise to much controversy
essentially because of inconsistencies arising from tests of significance based
on the fiducial distribution of unknown parameters. We attempt to show in
Section 2.7 that the fiducial test in general is ‘conservative’ in detecting significant
results in repeated sampling from populations with a fixed value of the unknown
ratio of variances.

In the case of comparison of two regression coefficients when the residual
variances are unequal, we are faced with a similar type of problem. Consider
two samples ¥, |z, and vy |2, (u = 1, -+ ,m+ 1;9 =1, --+ , ny + 1), where
z, and z, are fixed and y, and ¥, are normally and independently distributed
according to N(oy + Bi(@. — %), o) and N(as + Ba(z, — &), 03) respectively.
For the hypothesis 8; = 8, when the alternatives do not specify anything except
B1 > B2 or <Bs; or B; # By we shall consider the merits of statistics ¢* and »*
which correspond to statistics #; and v for the two means. While the statistic ¢*
is sensitive to the variation of both K = o1/05 and w, the ratio of the sums of
squares of the fixed variates, the statistic v* is insensitive to the variation of
both. Barankin® has extended Scheffé’s test to the comparison of two regression
coefficients under the above assumptions. The statistic proposed by Barankin
has Student’s distribution with n; — 1 d.of. (n; < m2) and provides the only
exact unbiased test so far known. While Scheffé’s test for the comparison of
two means and Barankin’s test for the comparison of two regression coefficients
should not be used when K is known and were never intended to utilize any
available approximate information about K, the question of investigating into
the possibility of using v* in the latter situation is not without interest (Section 3).
In Section 4 we consider the hypothesis of equality of two linear regression
functions viz., Hy: &y = as, f1 = B2 When the alternatives do not specify anything
except a; # agor By # By .

In studying the behavior of the power function and the probability of Type I
error of certain statistics under discussion we have made full use of Hsu’s method
and consequently only essential details have been given here.

2. Hypothesis of equality of two means when variances are unequal

2.1. The distribution of tx for any values of ny and n. . Consider the test function
te(=tx for K = k; Section 1) where k is some inexact value of K. This can be

3 E. W. Barankin, “Extension of the Romanovsky-Bartlett-Scheffe test’’ Proc. Berkeley
Symposium on Math. Stat. and Prob., Univer8ity of California Press, 1949, pp. 433-449.
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put in the form of & = (¢ + 8) (bxi + cxﬁ)_* where £ is N(0, 1) and the x”s
have independent x’-distribution with n; and n. d.of., and where

2 2 -
6 = (my — my) <n1:1~ 1 +n2:2_ 1) };
b= (K/k) ( + ne) '[k(nz + 1) + ma + 1] K + 1) + ma + 17,
¢ =(m+ n) k(na + 1) + ny + 1] [K(ng + 1) + nq + 1]7,
b/ec = K/k.
In what follows we shall omit the subscript % from # . The joint probability
element of £, xi and x3 is given by
dF (&, X3, X3) = $@m) 70 /2)T (my/2)] e D (1 /2) M
(x2/2)™"7 dgd () d(x3).
We transform to new variables ¢, r and 6 by the relations
£+ 6 = txi + od),
bxi = r’cos’ 0 0 <6< 7/2),
exs =’ sin @ (w0 <r< 4 w),

and integrate out 7. To integrate out § we put z = sin® 0if b < cand z = cos® 6
if b > c¢. This reduces the integration w.r.t. 6 to a series of hypergeometric
integrals. We finally have the following form for the frequency function of ¢, :

. (0 (20)"T n+n4+r41
g(t) = 2 ( 2 >

(2.1.1) I‘(%)I‘(@iﬁ2> r=0 BU1 + b n + n22—|- r+41

e—62/2 (b/c)n2+1/2 C%

.F<n1+nz+r+ 1 7y mi4my 1 —b/c>
2 272 714 b
where F denotes the hypergeometric function. As a check if we put b = ¢ =
(m + ny)~", we get the frequency function of non-central ¢ for n; -+ 7, d.of. For
the case b > ¢ we have only to interchange b with ¢ and n; with n. .
The null distribution of #(6 = 0) is an even function of ¢ ; consequently the
forms of the single and two-equal-tailed probability of Type I error will be the

same except for the constant 3. If we let 8;(8, K, k, ny , ny) = / g(t) dt denote the

single upper tail power function of ¢, , from (2.1.1) we obtain

.81(6, K, ]{,, ni, n2) — % —52/2 K/k)n2/2 Z Z

h=0 r=0
(2.1.2) ria g, (Mo é’)"
(5/2) I“<' +h>< 7 ,k_..l (nl—}-nQ r +1>

(G
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where 2o = (1 + b")™" and I,,(p, ¢) is the incomplete beta ratio. To obtain the
two equal tailed power function 8,(8, K, k, n;: , n2) we need only change r into 2r
and omit the factor 1.

2.2. Distribution of . for even values of ny and n, . (For notation refer to Section
2.1). When n; and n, are even, the method of characteristic functions yields a
single infinite series for the distribution of # , and when 8 = 0 this series reduces
to ™ -{2— e
¢(r) = (1 — 2bir)™™"* (1 — 2¢ir)™™'% To obtain the form of the frequency func-
tion of X we make use of the inversion theorem and integrate round a standard
contour in the lower half of the complex plane. The distribution of # can then be
obtained from the joint probability element of £ and X. We obtain the following
form for the single tailed power function of  :

& 2 r/2 ngl2 (n1/2)—1
BI(B, K, ]\', n, TI,Q) = %6—52I2 Z (6 /2) K > Z
=0 K —Fk

r | h=0

é .

(_1),.1«(, + h)( 3 )1» . <n1 LT +1>

- TN T I. 5 ) 2

(n\, \K —k

(5

( ) 2 / 12 (nsz-l P <7;§ + h)
+ (=1 i ( d >n1 Ne 7/

K —k -

=0 ny
) h!
F<2>

K » Mo T—I—l .
< _k>1 <2—-h, 2~) (K > )

where x, has been defined in the previous section and 2o = (1 + cf5) ™"
2.3. Unbiasedness of a test based on ¢ . Since the single and two tailed forms
of the power function of #; (Section 2.1) are essentially the same functions of the

standardised ‘distance’ §, following Hsu [3] we can show that (?9%1 > 0and %%2 >0

terms. The characteristic function of X = bx: + cxs is given by

(22.1)

for any fixed K and k; and consequently such a generic type of statistic provides
an unbiased test both against symmetric and asymmetric alternatives.

2.4. Variations in the power function and the probability of Type I error of i .
Tor the case k¥ = 1, Hsu [3] has already shown that the probability of Type I
error of the statistic £ is subject to large variations w.r.t. K. He also pointed
out that the behavior of the derivative of its power function w.r.t. K for fixed &
was similar to that of its probability of Type I error w.r.t. K. We shall presently
see that ¢, also shares this property with ¢} .

In the first place one would like to know if any choice of & in a small ne1ghb01-
hood of K would stabilize the variations in the Type I error of ¢ to such an
extent as to make it approximately insensitive to that difference between & and
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K. With this end in view we shall examine the nature of variations in the proba-
bility of Type I error of # w.r.t. K for any fixed k.
From (2.1.2) by putting § = 0 we obtain

P = P> ) = HE/K™ ST (% + h) a - K/

-1
(B o) (e 5201)

We now differentiate (2.4.1) and after simplification obtain

% < Cu(E/B)a(na + 1) — m(n + D/KIK®ms + 1) + m + 17 (K < k).

Similarly

ZTIZ > Cina(ns + 1) — mans + D/MK@e + 1) + m 4+ 17 (K > &),

where C; and C, are certain positive constants independent of K and ¥,

k= nl(nl + 1)
nz(’nz + 1)

24.1)

If we have

VIA
)

2%

for K < k.

This is the case when # is identical with the statistic » defined in Section 1
and the probability of Type I error curve expressing P as a function of K has a
minimum at this point: for n; < n, the minimum occurs for a value of K < 1
and vice versa. And since v is known to be insensitive to the variation of K [3],
therefore t; is insensitive to the variation of K for this value of k.

For any other assumed value of k the curve either starts decreasing from
K = o or from K = 0 to the point where K = k depending upon the values of
n; and 7, . In each case the ordinate of the curve continues to decrease for some
distance; it may decrease to a minimum and then start increasing or else decrease
indefinitely. For fixed 6 the power function of # also has a minimum when

o mn + 1)
K k 1’&2(7&2 + 1)
similar to that of its probability of Type I error. For the case k = 1 numerical
values of the single and two-tailed values of the probability of Type I error
and power function for different values of n; and n, and K are given in Tables II
and III (Section 2.5).

In certain practical situations it may happen for example that on the basis
of past experience one can determine k so that 4 < | k — K | < 2. The question
arises: how much is ¢ sensitive to such a neighborhood for any k, K, n; and n, ?
That it is hard to provide a practically useful answer to this question will be

; and for any other k the behavior of its power function is
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apparent from the nature of the distribution of ¢, which depends both on
K and k and not merely on their ratio. The following Table I will indicate how
in such a small neighborhood P(#, > #) can be in serious error in two different
directions.

2.5. Statistics i and v in relation to asymmetric and symmetric aspects of
“Student’s” hypothestis. Statistics t; and v are special cases of #, and the behavior
of their probability of Type I error and power function has already been discussed
(Sections 2.3 and 2.4). In this section we compare the single-tailed and two
tailed values of the probability of Type I error and power function in the light
of several particular examples. In all these calculations e.g. in P(t > %) and

TABLE 1
Variations in P(; > to) with respect to k for fired K

(K =5;n =2;n, =4;ty = 2.447)

k= 1 2 3 4 5 6 7
.1129 .0936 .0749 .0607 .05 .0418 .0355
TABLE II

Variations in the symmetric and asymmetric probability of Type I error of v and t; in
relation to the unknown ratio of variances K

K 0 125 5 1 2 4 8 16w 7 point d°‘fl
m=n=3 .074  .0633  .0504 .05 L0504 .0568 .0633 .0691 .074 single tailed 5%

v=t K .02 .0681  .0525 .05 L0525 .0567 .0681 .0770 .092  two-tailed 5%

‘ .034 .0181  .0110 .01 .0110  .0138 .0181 .0227 .034  two-tailed 1%
n=4,n =16 0112 .0129f .0142  .0195 .0227 .0265 .0203 .0305 .0324 single tailed 1%

P “ L012 L0161 .0197  .0238 .0204 .0359 .0407 .0433 .0465 two-tailed 1%
m=8,n =4 .075  .06R7  .0598  .0543 .0541 .0511} .0521 .0531 .056 single tailed 5%
=4, n =16 .00011 .00043 .00310 .01 0221 .0483 .0793 .0864 .133  single tailed 1%,

t “ .00007 .00031 .00244 .01 L0310  .0592 .1169 .1544 .222  two-tailed 1%
nm =8, ne =4 (1342 1056  .0710 .05 .0368 .0297 .0246 .0224 .0204 single tailed 5%

t P = .01 when K = .074
} P = .05 when K = 3.6

P(|t| > to), to refers to the single and # to the two tailed values of Fisher’s ¢
for the appropriate number of d.of. Tables II and III give the approximate
values for the probability of Type I error and the power function respectively
both against symmetric and asymmetric alternatives.

For equal sample sizes (v = #;) the Type I error and power function curves,
representing probability of Type I error and power function as a function of K,
have a minimum when K is unity and a maximum occurs when K is either zero or
infinity. Maximum values of the probability of Type I error for several equal
sample sizes are given in Table IV. It appears that for equal sample sizes the
probability of Type I error and the power function are likely to be insensitive
to the variation of K. We also notice in this connection that while the single
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tailed values of the probability of Type I error are less than those of the two
tailed values, the values of the two tailed power function for 6 = 1 are less
than the corresponding single tailed values. This appears to be true also for the
statistic v when n; # n, . For unequal sample sizes also the probability of Type I
error and the power function of ¢; are likely to be more sensitive to the variation
of K than those of v. It may be pointed out in the sequel that while it is recognized
that for unequal d.of. a fair comparison of the probability of Type I error and
the power function of v with those of #; ought to adjust v and # to the same level
of significance, namely the same maximum (for all K) probability of Type I
error, this would not alter our conclusions about the sensitive nature of #; .

TABLE IIT*

Variations in the asymmetric and symmetric power function of {1 and v corresponding to the
5% point of tabulated £, (6 = 1)

K= 0 .5 1 2 ©
n=mn =3 .189 141 137 141 .189 symmetric
v =1 .269 .229 2255 .229 .269 agymmetric

n = 8,n; =4 .354 .22 .152 112 .063 symmetric
2 .428 .204 2428 .194 122 asymmetric

n =8, n; =4 .208 .196 .162 .156% .168 symmetric
v .286 .259 247 .244% .255 asymmetric

1 minimum of .152 is reached for K = 3.6.
} minimum of .242 is reached for K = 3.6.

TABLE 1V
Mazimum probability of Type I error of v(= t,) for equal degrees of freedom
Symmetric Asymmetric
mtl=m+1 | 5% 1% 5% 1%
7 ‘ .0721 .0224 .0625 .0182
9 | .0668 .0193 .0595 .0162
11 i .0635 .0173 .0576 .0150
15 £ .0598 .0152 .0555 .0136
21 ‘ .0569 .0137 .0538 L0125

2.6. Statistic v, Scheffé’s test and paired difference t. If K is known, v or Scheffé’s
statistic S should not be used. If K is unknown, S is an ingenious device for
getting a Student’s ¢ with min(n;, n,) d.o.f. and provides the only exact un-
biased test so far known. In such a situation since nothing is known about K, a
fair comparison of the power function of S with » ought to adjust » to the same
maximum probability of Type I error for all K (maximum will occur for K = 0
or K = « according as n; 2 n.); and at such a maximum significance level it is

4 The author acknowledges with pleasure the help given in the preparation of this table
by Miss Elizabeth Shuhany of the Statistical Laboratory, Boston University.
5 Values taken from [7].
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recognized that v cannot be uniformly better than S. For samples of equal
size n the use of the paired difference ¢ with n — 1 d.o.f. (equivalent to S when
n; = ny ; Section 1) provides a suitable test for two reasons: (i) it is exact and
(i1) as shown by Walsh [8] has a high power efficiency.

If any approximate a priori information about K is available, v appears to
be the only suitable statistic to utilize such information. While S was not intended
to cope with such a situatjon, # (Cection 2.4) has been shown to be unsuitable.
Since v is insensitive to the variation of K, we shall not be far wrong in using
‘effective’ d.o.f. based upon an assumed value k of K satisfying some such relation
as+ < |k — K| < 2. The effective d.of. of v as given by Welch [1] and as given
by P = P(» > ty) or by P = P(|v| > t) for fixed P (listed in Table V as calcu-
lated d.of.) are identical for K = 0, 1, an » (n; = n,) and (ii) K = 0, m(m + 1) ,
na(ng + 1)
and « (n; # ng). For other values of K it appears from Table V that Welch’s
formula errs on the conservative side. The effective number of d.o.f. vary between
n; + n, and min(n, , ng) (cf. d.of. for S). Consequently in the absence of any

TABLE V
Adjusted power function of v in the light of ‘effective’ degrees of freedom
. Adjusted asymmetric power function of » ‘ .
Sample Size for probability of Type I error of .05 | Effective d.o.f.
!
§=1 8=2 | Calculated Welch’s formula

K =0.125 4 o K =0.125 4 @ ; =0.125 4 oK=0.125 4 o
nm—+1=n-4+1=3 174,204 204 (174 | .384 .476 .476 .384 | 2 3.36 3.36 2 2 2.94 2.94 2
mtl=n+1=7 .225 .236 .236 .225 | .550 .581 .581 .550 | 6 9.14 9.14 6 6 8.82 8.82 6
nm+1=9;n41=35!.210 .227 .242 .233 | .504 .556 .594 .572: 4 6.50 11.90 R 4 5.14 11.90 8

best unbiased test and in the light of any approximate information about K it
would appear that v has a decided advantage over any other statistic.
2.7. The Behrens-Fisher test in repeated sampling. Consider the statistic

d=@@—2&) (@ + sg)'i = t; sin § — {; cos 6,

where s} and s; are the unbiased estimates of the variances of the means Z and 7’
respectively, ¢ and ¢, have independent “Student’s” distributions with n; and n,
d.o.f. respectively, and tan 6 = s;/s; . On the basis of the “fiducial” distribution of
o3 and o3 Fisher [6] regards d as a “mixture” of t; and ¢, with constant coefficients.
It is to be noted that if s; and s, are fixed in the classical sense ¢ and ¢ have
independent normal conditional distributions with zero means and variances
o3/t and os/s; respectively; and if s; and s, vary in their own distribution d is
identical with » (Section 1).

Neyman [9] considered the integral of the joint probability law of Z, &/, s}, s
= =/

|2 — % ) . .
over the set m < t1 sin @ — f, cos 0 where the quantity on the right also
depends upon s; and s, and is the quantity d tabulated by Sukhatme [10], [11].



516 UTTAM CHAND

Neyman showed in particular that if pairs of normal populations with different K
are sampled (n; + 1 = 13, n; + 1 = 7), then the relative frequency of correct
statements about m; — m; based on the 59, points of d will not be equal to the
expected .95 and will vary with K.

We consider here the following similar type of question: what is the nature of
discrepancies that will arise in the probability of Type I error by the repeated
use of the Behrens-Fisher test in sampling from two normal populations? We
observe that since d and v have the same structural form, the appropriate
probability of Type I error in such a situation will be given by the probability
integral of v (Sections 2.2 and 2.5).

TABLE VI
Minimum and maximumt values of P( | v | > do) for different values of K
K 0 05 1 2 ® do
m+l=n+1=7 .05 .0321 .0307 .0321 .05 2.447
.0508 .0329 .0313 .0329 .0608 2.435
m+1=n+1=9 .05 .0362 .0346 .0362 .05 2.306
.0512 .0367 .0358 .0367 .0512 2.292
m+1=n-4+1=13 .05 .0405 .0396 .0405 .05 2.179
.0507 .0434 .0403 .0434 .0607 2.170
nm+1="7mn +1=13 .0307 .0281 .0317 .0393 .05 2.447
.06 .0460 .0516 .0597 .0720 2.179
Ny = Ng = © .05 .05 .05 .05 .05 1.960

T maximum values have been indicated in bold type.

We observe that P(] v | > z) is a monotone decreasing function of = for any
fixed K, n; and n, . Furthermore for fixed x, n; and n, we have d—P = 0 for ®

dK <
- .. N1 (n 1

K % 1,n; = npand (i) K % %,
and maximum values of P(| v | > do) for different values of K where do corre-
sponds to the highest and lowest value of tabulated d. It appears that for equal
sample sizes the minimum probability of Type I error is less than .05 and will
converge to .05 when K is either infinity or zero. The maximum probability of
Type I error converges to a value slightly higher than .05. This probability also
converges to .05 with increasing size of equal samples for every K. For unequal
sample sizes e.g. n; < 7, , the minimum yalues converge to .05 when K = « and
if m; > ng, this convergence takes place when K = 0. The maximum values
are both greater and less than .05.

ny # my . Table VI gives the minimum

3. Hypothesis of equality of regression coefficients when residual variances
are unequal.

3.1. Unbiasedness of tests based on statistics t* and v*. Consider

Sy — '+ 8@ — ¥ (i + _1_>T
ny+ ng — 2 M, M,

t* = (by — bz)[
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and

e o [S=D S — )T
v* = (by — ba) I:Ml(nl —1) " My(mn, — 1)] ’

where b; and b, are regression coeflicients calculated from independent samples; ¥
and Y’ are the sample regression functions; M; = Sz — )’ and M, = §'(z'— %)%
Under the assumptions of Section 1 these two quantities are distributed as

* = (E + A) (I-’le?,n;—-l + I‘ZXgmg-l)-},
v = (£ + A) Qi1 + M ing—1)

respectively, where £ is N(0, 1) and the x”s have independent x’-distribution
with d.o.f. indicated in the second subscripts, and where

Ml/M2 = W,
= Kw+ 1) (K + )™ (u + ny — 2)7,
pr=w+1) K+ w7 (n+ ne —2)7,

M2 K,
M2

2 2\ -1
— _ o1 92 \.
A= (Bl 62) <M1 + M2> ’
M=KEK+w) (- 1)7,
A= wE + w)t(ng — 17
M
A
Consequently these two statistics have the same basic distribution as obtained
previously for ¢, (Section 2.1) and their power functions are monotone increasing
functions of the standardized ‘distance’ A for fixed values of K, w, n; and n, .
While the statistic ¢* has “Student’s” distribution with n, + n. — 2 d.of.
whenever K = 1, the statistic v* is only so distributed when K = w(n; — 1)
(’I’Lz - 1)_1.

3.2. Variations in the probability of Type I error and power function of t* and v*.
The behavior of the partial derivatives of the probability of Type I error and
the power function of t* and v* w.r.t. K and also in relation to w is essentially
the same. For purposes of illustration we shall only consider the behavior of the
probability of Type I error. We shall presently see that for the hypothesis
B1 = B (cf. “Student’s” hypothesis m; = m,) while ¢* is sensitive to the variation
of K and w, v* is insensitive to both.

3.2.1. Variations w.ri. K for fized w. Remembering that the x*s in the de-
nominator of t* have respectively n; — 1 and n, — 1 d.o.f., we can write down
P(t* > t) from the corresponding form for #; (Section 2.3). After simplification
we obtain

’nz—'l
= (K/w) T

3.2.1.1) 271; < Ll(ns — 1) — w(na — D] (K + w)"YK K < 1),
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where 20 = (1 + ui5) ™" If we make use of the relation P(ny,ne, My, M, ,K) =

P(ny,ny, My, My, K in (3.2.1.1) we obtain

(3.2.1.2) g—z > Lo(K + w) ™ [(ng — 1) — wlng — 1)] (K > 1),

where L; and L, are certain positive constants independent of M;, A, and K.
Similarly for the statistic »* we have

aP - .
(3.2.1.3) e < Di(K¢) [(ng — 1) — w(ng — 1)¢]/(K + w) (K¢ < 1)
and
oP

(3.2.14) sg > Dol — 1) — win — 1)¢]/(K + w) (K¢ > 1),
where D; and D; are certain positive constants independent of K, M, and M, and

ny — 1 . oo e . ne — 1
where ¢ = wins — 1), We notice that if (i) n; = npand w = 1 or (i) w = —
we have t* = v* and both from (3.2.1.1), (3.2.1.2) and from (3.2.1.3), (3.2.1.4)
we obtain :9213{ S 0forK § L. In the case (i) the maximum probability of Type I

error occurs at K = o and K = 0. In case (ii) the maximum will sometimes
oceur for K = 0 and sometimes for K = o, depending on the relative magnitude
of n; and n, .

For other situations ¢* and v* exhibit a type of behavior essentially similar
to that of #; and v (Section 2.5). We notice that the (P, K) curve for v* has a
w*_g?__ 11). If n, = ny, the minimum point is given by
K = w. Therefore with an approximate knowledge of K, a useful practical hint
to remember is to so adjust M; and M, as to have w approximately equal to K.
If n1 # np any information about o7 being greater or less than ¢ can be used
with decided advantage to adjust M, , M, , n; and n. so as to reduce considerably
the risk of the first kind and thus work in a region of the (P, K) curve where
there is not much danger of bias in the probability of Type I error. This will
also reduce the fluctuations of the power function of » about its minimum which
wln — 1)

Ng — 1 ’

3.2.2. Variations in relation to w for fixed K. The partial derivative of P t* > t)

with respect to w is given by

minimum when K =

also occurs for X =

‘;_P =31 - OK""(K + w)*' > (1 - K)
w h=0
(3.2.2.1) P(nz 2— 1 + h)zénlﬁz—Z)ﬂHL (1 — 20)1'

, - (K<,
h!P<n2 2— 1> B<7’l1 + np — 2 + 7, %>

2
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Therefore
P
Fo >0
for K < 1.
Similarly
P
— <
ow — 0
for K > 1.

To justify the differentiation of the series in (3.2.2.1) we make use of the result

I:.("———‘+’2’2"2 +h, l) —1,,<”_.__._1+;‘2“2 +h+ 1,%)

(n1+ng—2)/2+h ]
2g " (1 — 2)

_<n1+n2—2+h>B<nl+n2—2+h’%>’

2 2

and consequently the series under consideration may be shown to be dominated
by an absolutely and uniformly convergent series for 0 < K < 1.
For the statistic v* consider

PQ* > t) = 3(Kg¢)" " i (1 — K¢)* 1‘("2 2" 1L h)
h==0

Jre+ or( ) n (PR 2 ) s <

where yo = (1 + Mf5)~". We notice from (3.2.2.2) and from the form of quantities
M and A; (Section 3.1) that P(v* > &) depends on K and w only through the
product of K and 1/w. Consequently variations of P w.r.t. 1/w for fixed K
are the same as those of P w.r.t. K for fixed w. Thus we may directly infer that
P(v* > 1) will be insensitive to the variations of w. The following Table VII
will illustrate the nature of variations in the probability of Type I error in the
tests based on ¢* and v* in relation to w.

(3222)

TABLE VII
Variations in the probability of Type I error of t* and v*
(K =2;n =mng=17;t=1.782)

w 0 25 5 1 2 ©
P(* > te) .0259 .0358 .0427 .0512 .0594 .0866
P(v* > t) .0625 .0570 .0539 .0512 .06 .0625

It would appear that on the analogy of statistics ¢; and » for the comparison of
two means one could guess about the sensitive nature of #* in relation to the
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variations of the ‘nuisance’ parameter K. The additional drawback in ¢* which

stems from the monotone nature of its variations with respect to w is a further

warning against the use of a #* type statistic for the hypothesis 8, = 8, when
2 2

a1 # g2 .

4. Hypothesis of equality of two linear regression functions when variances
are unequal.

4.1. The statistic Z. (For notation refer to Sections 2.1 and 3.1). Consider the
model given in Sections 1 and 3 for the comparison of two regression coefficients.
If the variances are equal, the statistic based on the likelihood ratio criterion
for the composite hypothesis a; = a; and 8; = B, is given by

G — 7221 + D (e + Dny+ np + 2)™ + (b1 — ba) M Mo(M, + M2)_1
Sy — Y+ 8 — ¥
The quantity Z is distributed like the ratio of two independently distributed xs

and consequently its distribution is precisely determined under the hypothesis.
If o1 # o3, Z can be put in the form of

Z = (01)&,1 + azxg.l) (Kxg,nl_l + xi.nz—x)'l,

which is now distributed as the ratio of ‘mixtures’ of independently distributed
x”’s with d.o.f. indicated in the second subscripts and where

a =+ 1+ Kmn+ 1)] (s + na + 2)7,
a =K+ w 1+ w"

In the non-null case when a; 5 «y, 81 ¥ B the numerator of Z is a mixture of
non-central squares. If we let 8(K, w, 8, A, n1, n) denote the power function
of Z, following Robbins and Pittman [12] we obtain

Z=

0 0 el

BK, w, 8, A, ny, ne) = 2 2, 2 c; dupely <’“ T My, k+J+1>

=0 h=0 k=0
(4.1.1) 41
n
<K> 1,w<n2+1>,

where

' (al/a2) r'(j+3%)
e O (1

—(n-1)/2 — 1Y

K r( 4 h>< 1?)

dh = n — )
— 1\
()

pe = ADY kL (D' =6 + AY,
¢ = (14 Zy/a)™

— ai/ar)’,
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4.2. Variations in the probability of Type I error and the power function of Z.
Corresponding to (4.1.1) we obtain the expression for the probability of Type I
error P(Z > Z) by putting D = 0 and k& = 0. It has not been possible to establish
any definite law concerning the behavior of the probability of Type I error
and the power function w.r.t. the ‘nuisance’ parameter K. However we shall
presently establish their monotone dependence on the variable parameter w.

We differentiate P(Z > Z,) with respect to w and after simplification obtain

‘%’ = (K — 1)(ar/ap)'z2 w[g@ - "—‘)i - a—lj(l - a"1>H]

9 JT(3) a as a
3 .
(Mmoo 1) _ K- De/a) oo, TG +3/2)
(B - ns ) = e o IO
-[I;(m+n2+h—1,]+1> (nl-;—nz+h_1’j+2>]<0
for K > 1, w < Zl ::__ } Similarly by utilizing an appropriate expression for
2

m 1 we can show that oP < 0. For the case
ne + 1 ow
K < 11it can be shown that P(Z > Z;) is a monotone increasing function of w.
This is also true of the dependence of the power function of Z on w.

4.3. Unbiasedness of Z. We differentiate (4.1.1) w.r.t. & and A and after

simplification obtaln —ﬂ =0, gi 2 0. Thus the power function of Z has a relative
minimum at § = 0, A = 0. ,

The author is greatly indebted to Professors Harold Hotelling and William G.
Madow for guidance in this research and to the referees for many useful sug-

gestions and criticisms.

P(Z > Z) for K > 1, w >
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