GENERALIZED HIT PROBABILITIES WITH A GAUSSIAN
TARGET!

By D. A. S. FrasSgERr
University of Toronto

1. Summary. A general discrete distribution is obtained whose random vari-
able is the number of “hits” on a target. The target is k-dimensional and Gaussian
diffuse, that is, the probability of a hit is given to within a constant factor by a
Gaussian probability density function of the position of the ‘“trajectory” in
k dimensions. For a series of n rounds, the n positions of the trajectory have a
multivariate Gaussian distribution. An expression is given, using Theorems 1
and 2 or 1 and 3, for the probability of r hits as a linear combination of probabili-
ties of all hits on each possible set of rounds. Theorems 4, 5, and 6, with Theorem
1, give three limiting distributions as n, the number of rounds, tends to infinity.
Theorems 7, 8, and 9, with Theorem 1, present three other limiting cases, and
Theorems 10 and 1 give a time average result.

2. The problem. In [1], L. B. C. Cunningham and H. R. B. Hynd proposed
a problem in multivariate statistics: to find the probability of at least one hit
when an automatic gun is used against a moving target. Because of inability in
aiming, the point of aim, by which we mean the centre of the distribution of the
shell trajectory, will not always be the centre of the target. In fact, while the
gun is being fired, the point of aim is found to wander back and forth across the
target. The main complication in the problem arises in taking account of the
dependence between the successive points of aim at the instants of firing.

In [1] the problem is given an approximate solution covering a partial range
of parameter values and assuming the target has a circular outline.

Here the problem is modified by using a Gaussian diffuse target, a target for
which the probability of a hit is given to within a constant factor by a Gaussian
probability density function of the position of the trajectory. From a target
which is essentially two-dimensional for aiming, the problem is generalized to a
target in k dimensions, having in mind the possibility of application to other
problems.

If we assume the target to be a Gaussian diffuse target and the position of
the trajectory to be distributed according to a two-dimensional Gaussian dis-
tribution about the point of aim, then the probability of a “hit” as a function
of the point of aim also has the form of a Gaussian diffuse target; that is, it is
a constant times a Gaussian pdf of the point of aim. This will be discussed in
a later paper, where the general theory will be applied to the two-dimensional
problem as proposed by Cunningham and Hynd and a method of numerical
evaluation considered and applied to an example.
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For the general theory we shall start with the Gaussian diffuse target in terms
of the point of aim, consider it in k¥ dimensions, and call it a ‘“success function.”
The point of aim is a random variable in k dimensions and will be called a pre-
diction. If the prediction yields a hit we shall speak of a successful prediction.

The abstracted statistical problem may be stated as follows. In a series of n
predictions having a joint distribution, find the probability distribution of, the
number. B of successful predictions. Let the 4th prediction be X' . =
X, Xoiy+++y, Xu) = {X,:} where u ranges over the set (1, 2, ---, k). A
prediction X; = %; becomes a successful prediction with probablllty glven by
the success function s;(Z;), that is,

Pr{Successful prediction | X; = %} = i),

where 0 < s;(%) < 1.

In the following theory the problem is solved when the predictions have a
Gaussian distribution and the success functions have the form of a Gaussian
diffuse target.

In the original problem of Cunningham and Hynd it was found that the hori-
zontal and vertical components of the point of aim were reasonably independent.
Consequently we shall assume independence between the values of the uth
coordinate for the n predictions and values of the vth coordinate, where u = » =
1,2, - -+, k. The generalization omitting this independence provides little addi-
tional complication.

For each value of g, let the set {X i} have a Gaussian distribution with means
{m,:} and covariance matrix || ¢ || which is positive definite. Because we shall
want the probability density function for any subset of the predictions, we.in-
troduce the following notation for the inverse of the covariance matrix cor-
responding to a subset. For a typical subset (51, %2, -, %,) of the integers
(1,2, - -+, n) we shall use the symbol 8, . Then if p, ¢ range over this subset, we
have

2.1) a2 1™ = ] ofum ||

as the inverse of the covariance matrix for the pth coordinates of the subset 8,
of the predictions. Therefore they will have probability density element

pa |4
(2.2) L%’,L,S—':)/TI exp [—3{ Z 8% @up — Myp) @g — Myg) }] H A%y -
p.9eBy ey

Let the success function of the sth prediction have the following form:
(2-3) st(xz) C exp [_l E T’Es) Lui xv:]

where 0 < C; < 1, || 7t || is positive definite, and u, » range over the set {1,
2, -+, k}. There is no essential restriction in assuming that the success function
is centered at the origin, since a change of origin in each k-dimensional space to
center the success functions would only adjust the values m,; .



250 D. A. S. FRASER

3. Probabilities from expectations. To describe the distribution of B we need
the probabilities of 0, 1,.2, - -+, n successful predictions, that is, Pr{R = r}
forr = 0, 1, - - - , n. These will not.be given in the main theorems, but rather
an expression for E, defined below from which the probabilities can be calculated
by well known formulas which are given in Theorem 1.

@.1) E.= 2 Eiuys,
1< <dp

= E Eﬂr)
B

where the summation is over all sets of r integers chosen from the set (1,2, - -,
n). E;;,...:, is the probability that predictions 4, , %2, -: - , %, will be successful
predictions. E, can be interpreted as the expected number of sets of r successful
predictions, counted with overlapping, in our series of n predictions. This is
easily seen since F, is the sum of the probabilities for all the possible sets of
predictions.

TreoreM 1. If E, is defined by equation (3.1) and following, then the probability
of 0 successes s

3.2 Pr{R=0} =1—E; + Ey— ++- + (—1)"E,,
and the probability of r successes is

33) PriR =r} = %{NE’_ (r -;-' P _';!S)IE».

nr _ nl
+ e+ (-1 mEn}
L () R TR (e P

SRR S G Vi (:‘) En.
These are well known formulas of probability theory.

4. The main theorem.

THEOREM 2. Given that the success functions are Gaussian diffuse as given by
(2.3), and that the n predictions havé a Gaussian joint distribution as given by
(2.1) and (2.2), then

(4.1) Eﬂ' = (IPIC,) ] Opefw + @ (z'a‘q) ""z'p) l"

when all the m,; = 0, and a more general formula is given by (4.4) and (4.5) below.
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Proor. Consider the following expression for Eg,:
Es, = Pr{predictions ¢, 75, - - - , 4, will be successful predictions}
= E{I} [Cp exp ("% E T’z;)xmzw)]}

HI offw| ?
(H CP) (2 )k,./z

° f exp [—} Z {""2;») 890 Tup Trg + 07w 8 (Tup — M) (Tg — Mag) }]Hdzmn
"y, 0vq

E
= (l;I Cy) (12—7‘3,,[—,, f exp [—3{y'Ty + (y — m)'Aly — m)}] dy.

The matrices in the last expression are defined by

(4.2) 4 = || ofwdm ||,

(4.3) T = || 7or3q I,
v = |l %wll,
m.= || mu ||.

The matrices are kr by kr or kr by 1, with g, p indicating rows and », ¢ indicating
columns,

lalt
= (H CP) (2 )k,/z

-/ exp [—3{y'(T + Ay — y'Am — m'Ay + m'A(T + A)~*4Am}] dy
-exp [—3{m'Am —m'A(T + A)7'Am}},

We have completed the quadratic form by removing an appropriate factor from
under the sign of integra,tion Integrating over the whole space, we find

= (H Co) @ ¥ T A _|_ T)l exp [—3(m'Am — m’A(4 + 7)™ Am))
(4.4) = (H Cy) | I+ A7'T | exp [—3m/Bm]
»
= (H Cp) | Opg 0w + 0'(:41)7"&) l-* exp ["”2‘” Z,,.:q Myp By, p,v,a Mg,
P Wy

where
B = ” Bu.p.v-q ”
=A4A—-—AA+ T4
(4.5) = All — (I + A7)

= || 6528 |1 [11 8008 || = Il ndio + 05275 1|7
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5. Simplifications. There are two important cases given by Theorem 3 and
its corollary in which we obtain a simplification in the formula for Eg, .

TrroREM 3. Given the conditions of Theorem 2 and the condition that ||z (5|] is
diagonal for each 1, the following expréssion is obtained for Eg, :

(5.1) Eg, = ( HCP) H l 0pq + ”(z’:q) (“p) l_%
? »

when my,; = 0.

Proor. We note that || 7% || = || 76w || and hence the determinant in
(4.1) consists of diagonal blocks with zeros elsewhere. When we expand, (5.1)
is obtained.

COROLLARY. Assuming the conditions of Theorem 2 and the condstion that || 76 |l

has for each % the same principal axes and || e® |l = |to:;l|l independent of u,
then
(5:2) By, = (I C5) I 1 00e + oot |

when my; = 0. {N} are the characteristic roots of the matriz || 7 || and the
superscripts u yield corresponding roots in the k-dimensional spaces for the n values
of 1.

The proof is obtained by rotating each k-dimensional space to diagonalize the
matrices. The same rotation will diagonalize for each ¢. Because || o || is in-
dependent of u the covariance matrix for the predictions will be unchanged.

6. Limiting distribution (number of predictions n — ). Because the ex-
pression for E, is a sum of (}) terms, the numerical calculations for large values
of m would be prodigious. Consequently we introduce several limiting distribu-
tions obtained by letting n increase indefinitely, subject to suitable conditions.
The limiting conditions in each case should indicate the applicability in particular
situations.

Concerning the question of the existence of the different limiting distributions,
a sufficient condition would be the convergence of the series for Pr{R = r},

PR =1} = 3 (—1)’(’ ‘f s)E,+,.

83=0

obtained by having

<1

©.1) lim "

r—®0 m’

for some value of m.

When n becomes large, the enumeration of predictions is unwieldy. Therefore,
they will be given in terms of time, a convenient parameter for intuitive con-
sideration. Thus we write

W _
045 = O(t5.t)) s
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where this is the covariance between the uth coordinates of the predlctlons at
times ¢; and ¢;. Also
T = o

an element of the success function matrix at time ¢; .

THEOREM 4. TypE 1. Assuming the conditions of Theorem 2 and letting n —
so that the predictions are uniformly spaced from 0 to T and the success functions
approach 0 as 1/n with D(t) = nC(t) bounded and independent of n, then

(6 2) E = 'Trf f (H D(tp)> I‘qusnr'*’ U(tp tg) tp)l )dtldt2 dtm

where my,; = 0.
Proor. The minimum value of | 8,6, + a(,, Q)P‘Z,p) |, which is the de-
terminant of a positive definite matrix with 1’s added down the diagonal, will
be greater than 1. If in addition D(t) is bounded, we have
i r'E,
e [sup DQ)T

and this is sufficient to assure the existence of the limiting distribution.

E =1lm 3 {(H D(t,,))

n—0 ﬂ,.

<1

) ' 1=}
g 0u» + O (tp,ta) T(tp) I

i L= 1/m) -+ (A — /)

n—o0 r!

(];[ D(tp) l 0pq 0w + Ug‘;;,tq)T‘("t’p) l—g

all permutations nn — 1) LN (n —-7T + 1)

r from n

1 T T r
— [, D
riTr fo fo <p1—11 (tp)>
This completes the proof.

The applicability of this distribution as an approximation for large values of
n will be discussed for the Cunningham and Hynd problem in a later paper.

TrEOREM 5. TyYPE II. Assuming the conditions of Theorem 2 and lettmg n— o
and the scale of the success functions decrease such that 7(;;y = 7 Tt , then

63 B= [ [ (T ew 176 ™) I 1ot ™ T as
if my = 0, | (55| is bounded from 0, and

T r
[ T e 1T ds
0 0 B p=1

i

_; r
6Pq61"’ + Ué‘z.tq) 7"2:,) * I-Il dtp .
p=
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exists and <m” where m is independent of r.

Proor. The existence of the limiting distribution is guaranteed by these last
conditions, which insure that the set { E,} satisfies the condition given by formula
(6.1).

B, = lim 30 {(I] C)) | 8padr + oBupn™r |}
tim 32 {(TICE) AL | oo ) 1 o825 0 + 7051 000 )
5 { AL )AL | oty 1) LI 1P+ 0(n-2"°))}

lim

n—0 By

nf

=i [ [T 145 T o8 r’ T ds,.

This proves the theorem.

TaeoreM 6. TypE III. Assuming the conditions of Theorem 2 and letting n — o
with the scale of the success function increasing, and its density at any trial decreasing
according to

@) 7 = 1,

() €O = 1D,
then

(6.4) E, = ;1'[71, fo ' D(z) dt]r,

where my; = 0.

The proof of this theorem is similar to that of Theorem 4. Note that the con-
dition for a limiting distribution is satlsﬁed so long as D(t) is bounded.

This distribution is the Poisson distrilution with the usual Poisson parameter

_ 1

7. Limiting distributions for a fixed number of predictions n.

TreEOREM 7. When the scale of the success function increases, the distribution
approaches the stmple generalization of the binomial where the probability of success-
ful predictions need not be the same for each trial, and
(7.1) E.=2 1l ¢,

Br DBy
where my; = 0.

TuarEOREM 8. When the correlation between the values of particular coordinates of
X approaches 0, then the simple binomial generalization is obtained, with
(7.2) E, = Z H {CP I 0w + '7(”) ('p) I_*}'

Br peBr
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THEOREM 9. When the correlation between the values at different trials of particular
coordinates of X; approaches 1, then

73) B, = 3 (T1 G5) | tsgbr + Vo3 Vo 20, .
The proofs for Theorems 7, 8, and 9 follow routine lines.

8. Time average for a fixed number of predictions n. If the conditions for our
generalized distribution vary with time, then an expression for the probabilities
obtained as a time average would be appropriate.

TurorEM 10. Assuming the time interval between predictions is h and that the
first prediction occurs at an undetermined time in the interval (0, T"), then the
general distribution has its probabilities determined by

) I > g
81 E, = ; g _/; - (IPI Cc(t + Ph)> | 8004 + 0 &hph,tramy Teorom | dte

Proor. Assuming that the time of the first prediction is uniformly distributed
on the interval (0, 7”), (8.1) follows from Theorem 2.
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