DESIGNS FOR TWO-WAY ELIMINATION OF HETEROGENEITY
By S. S. SHRIKHANDE

University of North Carolina

1. Introduction and summary. Sometimes in a design the position within the
block is important as a source of variation, and the experiment gains in effi-
ciency by eliminating the positional effect. The classical example is due to
Youden in his studies on the tobacco mosaic virus [1]. He found that the response
to treatments also depends on the position of the leaf on the plant. If the num-
ber of leaves is sufficient so that every treatment can be applied to one leaf of a
tree, then we get an ordinary Latin square, in which the trees are columns and
the leaves belonging to the same position constitute the rows. But if the num-
ber of treatments is larger than the number of leaf positions available, then we
must have incomplete columns. Youden used a design in which the columns
constituted a balanced incomplete block design, whereas the rows were com-
plete. These designs are known as Youden’s squares, and can be used when
two-way elimination of heterogeneity is desired.

In Fisher and Yates statistical tables [2] balanced incomplete block designs
in which the number of blocks b is equal to the number of treatments » have been
used to obtain Youden’s squares, and the authors state that “in all cases of
practical importance” it has been found possible to convert balanced incomplete
blocks of the above kind to a Youden’s square by so ordering the varieties in
the blocks that each variety occurs once in each position. F. W. Levi noted
(8], p. 6) that this reordering can always be done, in virtue of a theorem given
by Konig [4] which states that an even regular graph of degree m is the product
of m regular graphs of degree 1. Smith and Hartley [5] give a practical procedure
for converting balanced incomplete blocks with b = v into Youden’s squares.

In this paper I have considered some general classes of designs for two-way
elimination of heterogeneity. In Section 3 balanced incomplete block designs
for which b = mv have been used to obtain two-way designs in which each
treatment occurs in a given position m times. The case m = 1 gives Youden’s
squares. In Section 4 it has been shown that balanced incomplete block designs
for which b is not an integral multiple of v can be used to obtain designs for
two-way elimination of heterogeneity in which there are two accuracies (i.e.,
some pairs of treatments are compared with one accuracy, while other pairs are
compared with a different accuracy) as in the case of lattice designs for one-way
elimination of heterogeneity. In Sections 5 and 6 partially balanced designs
have been used to obtain two-way designs with two accuracies. In every case
the method of analysis and tables of actual designs have been given.

2. Notation and preliminaries. Consider a two-way design with & rows and
b columns. Let there be v treatments altogether, and let n;; denote the number
235
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236 S. S. SHRIKHANDE

of times the treatment 7 occurs in row j, and n. the number of times it occurs
in the column c. If y . is the yield for the jth row and cth column, the mathemati-

cal model assumed will be .

(2.0 Yie =g + ti + bj + pc + €,

where ; is the effect of the treatment ¢ occurring in the row j and column c,
b; and p, are the effects of the jth row and cth column, respectively, and ej. is

a random variable which is distributed N(0, ¢*) independently for each value

of j and c.
Let T;, B, and B, denote respectively the totals of the yields corresponding

to the treatment 7, row j and column ¢. Put

1 1 ‘ : G
2.0 Q=T - Bzi ni; Bj — 70270 nie Be + r—bf’

where G is the grand total of all the yields and r, is the number of replications
of the ¢th treatment. Q; is called the adjusted yield of the ¢th treatment.
Let us set

s 1 1
(2.2) Cii = 15 (1 + Z—k) - l; 2 n%j - Ezc n;i,
1 1 7 TiTu o
(23) Ciy = _5 2 Nij Mg — ’;Ec Nic Nue + W ) 17 U

It can be easily shown that the rank of the matrix (c:.) is at the most equal to
» — 1. We shall suppose that the parameters entering in the design are such
that rank (c:,) is actually equal to v — 1. In this case the design is said to be
connected. The best unbiased linear estimate of any contrast

(24) hty + bty + -+ + Ly, 2l =0,
is obtained by solving the normal equations
(2'5) c‘iltl+ct'2t2+ st +Civtv = Ql', i= 1, 2, M ,v’

and substituting the values in the contrast. The ¢’s are determined up to an
arbitrary constant, and may be made unique by using the constraint

(2.6) htt+ -+t =0

Let#,%, - , 1 be any solution of (2.4). Then the analysis of variance table
for the design will be Table I. Detailed proofs of the facts stated in this section
can be worked out along the lines indicated by Bose [6].

3. Designs with complete rows in which every treatment occurs in a row
m times. Consider a two-way design in which the columns form a balanced in-
complete block design with parameters v, b, r, k, A, where v is the number of
treatments, b is the number of blocks, k is the block size, r is the number of
replications of each treatment, and X\ is the number of times any two treatments
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occur together in the same column. Then
3.0) Seni =r; =1, i=1,2 -0,
3.1) SeMicNue = N, tL,u=12,---,v;7 % u.

Consider the matrix N = (ni;) of » rows and k columns, n;; being the number
already defined. The matrix N is intrinsically associated with the positions
of the treatments within the columns of the design, and depends on the parame-
ters of the design only inasmuch as each column adds up to b and each row to

TABLE I
Analysts of variance for a two-way design

Source of variation d.f. Sum of squares * Mean square
Treatment contrasts S?

eliminating rows v —1 8 =2:t:Q: sf = —%

and columns ' v-1
Row contrasts ignor- 1 , @&

ing treatments k-1 ZEfo bk
Column contrasts 1 e @

ignoring treatments b—1 kz‘ B - bk

G-DEk-1] . \ s
Error —w—1) S%(by subtraction) | s = O—D =1 = =D
2 GZ

Total bk — 1 ZieYie — o

2
F=§§,d.f.v—-1, ®—1k-1) — @—1).
r. Let b be an integral multiple of v, so that b = mv. Then r = mk. By suitable

interchanges of treatments in the same column of the design, the matrix N can
be so modified that

(3.2) nij = m, i=1,2-,0;5=1,2 -,k

since the procedure of Smith and Hartley [5] can be easily generalized in the
following manner to cover the case m # 1.
If n;; = m is not satisfied for all values of 7, j, we define

Mij = M — Ny if m > nj,
=90 if m < nyj,
M = Emi,-.

Then, following the Smith-Hartley procedure, only slight modifications in the
argument show that we can find an interchange or system of interchanges within
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columns which would reduce M by at least unity. Successive applications of this
process give the desired result, since M = 0 implies n;; = m for all 4, j.
Now we have

e

(3.3) =;nd = km?, i=1,2 ¢,
(3.4) Zinine; = km',  u=1,2,+,0;% 5% u.
Under the restraint (2.6) the normal equations (2.5) become

A
(3.5) (r -+ 7{) t= Qs,

which are exactly the same as for balanced incomplete block designs (cf. Bose
[6]). Hence #;, the estimate of ¢;, is Q;/7E, where E = y\/kr, and the analysis
of variance can be obtained by substituting this value of #; in the table at the
end of Section 2. Also

(3.6) V(i — ) = 26°/rE.

When a cyclic or multicyclic solution of a balanced incomplete block design
is available the matrix N already obeys the condition (3.2), and an actual appli-
cation of the Smith-Hartley process is unnecessary. Only the designs with
r < 10 are practically important, and cyclic or multicyclic solutions for all
but three of these designs are available in the tables of Fisher and Yates [2],
and in a paper by Rao [7]. The solution for the three missing cases are given
in Table II. The solution for the design 1 of Table II is obtained by modifying
the corresponding solution by Bose [8], and the solutions for designs 2 and 3
are obtained from the corresponding solutions by Bhattacharya [9], [10]. The
designs considered here may be called extended Youden’s square designs when
m > 1.

In Table II, instead of giving the design in the row-column form, it is con-
venient to give the blocks corresponding to the columns. The row position is
then given by the position within the block. This convention will be adopted
throughout the paper. In many cases it is possible to represent the designs com-
pactly by developing a set of blocks from one block cyclically. The following
convention will be adopted for this purpose. To develop the block (a, b, - - - , x)
cyclically (mod g), we write down the set of g blocks (a + ¢, b + ¢, --- , z + ),
t=20,1,2 ---,¢9 — 1, and then reduce every number appearing in the blocks
to lie between 1 and ¢ (both inclusive) by subtracting g whenever a number
appearing in the blocks exceeds g. In certain cases to each number between 1
and ¢ there correspond m treatments instead of one. The treatments correspond-
ing to ¢ being denoted by ¢1, ¢z, - - , ¢ . In this case in developing the blocks
suffixes are left invariant. Thus by developing (1, 5;, 41) eyclically (mod 5), we
get (11, 52, 41), (21, 12, 51), (31, 22, 1), (41, 32, 21), (51, 42, 3.

Sometimes treatments are represented by compound symbols (a, b) with or
without suffixes, and we have to develop a block (mod ¢: , g2). This can be done
analogously. For example, by developing (mod 3, 3) the block

[(2’ 1)1 ’ (1; 2)1 ’ (2, 2)2 ’ (1’ 1)2]’
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we get the nine blocks

[(2, D1, (1, 2)1, 2, 2)2, (1, 1)d],
[, D1, B, 2)1, (1, 2)2, (3, 1),
(3, 2)1, (2, 3)1, 3, 3)2, (2, 2)d],
(2, 3), (1, D, (2, 1), (1, 3)d],
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(3, D1, (2, 201, (3, 2)z, (2, 1)d],
(2, 2)1, (@, )1, (2, 3)2, (1, 2)d,
[, 21, B, 3), (1, 3)z, (3, 2)a],
(3, 3)1, (2, D, (3, 1)z, (2, 3)dl,

[(17 3)1 "(3: 1)1 ’ (1’ 1)2 ’ (3) 3)2]~

TABLE II
Some extended Youden’s square designs
Serial | Parameters:
no. |9, b, 7 kA Blocks

1 10) 30: 97 3; (5‘21 1., 22)’ (11) 52; 41)1 (21’ 31’ 52)’ (11; 44, 22); (22) 31, 21)’ (52; 22) 51);
2 other blocks are obtained by developing (mod 5), keeping the

suffixes fixed. '

2 25,25,9,9, | (5,1,23,6,20,12,17,2, 1i), (18,21,5,7,10,24,3,12, 1),

3 (15,2,9,10,1,21,25,17,16), (23,22,11,9,3,18,1,16,14),
(24,13,2,14,7,8,22,1,17), (8,25,20,3,6,1,13,18,15),
(20,4,3,17,8,10,7,23,9), (21,8,24,11,4,6,2,9,18),
(14,12,13,4,17,25,21,11,3), 3,24,17,22,15,5,16,4,6),

(25, 5,18, 20, 16, 14,4,7,2), (22,19,1,5,25,11,10,8,4),
(19,14,6,13,9,17,18, 5,10), (1,20,15,12,19,4,9,14,24),
(16,7,4,1,13,23,6,21,19), (12,16,8,23,24,9, 5,25,13),
o, 3,25,19,22,2,12,6,7), (7,17,12,18,11, 16, 15,19, 8),
(13,11, 10,16,2, 3, 19, 24, 20), (6,10, 16, 8,12, 20, 14, 22, 21),
(2,23,21,15, 14,19, 8, 3, 5), (10,6, 14,24,23,7,11,15, 25),
(17, 18,19, 25, 21, 22, 24, 20, 23), (4,15,22,2,18,13, 23,10,12),
1,9, 7,21, 5, 15, 20, 13, 22)

3 31, 31, 10, | (1,2,28,15,9,11,8,16,18,4), 2,3,22,16,10,17,9,19, 5,12),

10, 3 3,4,23,6,17,13,10, 18,11, 20), 4,5,24,18,12,21,11,14,19,7),
(5,6,25,19,13,8,12,20,15,1), (6,7,26,20,14,9,16,21, 2,13),
(7,1,27,21,8,10,14,17,3,15), 9,12,6,1,27,18,29, 26,17, 24),

(10,13,7, 2,29, 25,19, 27, 28, 18),
(12,8,2,4,20,29,23,22,21,27),

(14, 10, 4, 24, 15, 16, 22, 29, 6, 25),
(15,24, 20,11, 2, 27, 5,10, 30, 26),

(17,26,15,13, 30, 22,7, 12, 4,28),
(19, 28.17.8, 6, 14,2, 24, 23, 30),
(21,23,19,30, 1,26, 4, 15,9, 10),
(25.17.9,28, 31, 4,27, 5,20, 14)
(27,19,11, 23,22, 6,15,9,7,31),
(22,21,13,25,24,1,17,2, 31, 11),
(29,30,31,7,4,5,6,3,1,2),

(31, 29, 30, 17, 18, 19, 20, 15, 16, 21)

(11,14,1, 3,19, 20, 26, 28, 29, 22),
(13,9,3,5,21, 15,28, 23, 24, 29),

(8,11,5,29, 16, 23, 25,7, 26, 17),
(16,25,21,12, 3,28, 30,11, 27,6),
(18,27,16, 14, 5,30, 1, 13, 22, 23),
(20,22, 18,9,7, 24,3, 30, 25, 8),

(24,16, 8,27, 26,3, 31, 4,13, 19),
(26,18, 10, 22, 28, 31,21, 6,8, 5),
(28, 20,12,31,23,7,24,1, 10, 16),
(23,15,14,26 18,31,12,3),

9 1

3
7
,25,2,
(30,31, 29, 10, 11,12, 13, 8, 14, 9),
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4. Other two-way designs obtained from balanced incomplete block designs.
Balanced incomplete block designs in which the number of blocks (columns) is
not an integral multiple of the number of treatments can be used to give designs
with two accuracies for two-way elimination of heterogeneity. This is due to
the fact that by suitable interchange of treatments in various columns it has
been possible in every known case where » < 10 to express the design in a form
such that in the matrix N, already referred to,

(4-00) Ej’n%, = M2 ) i = 1, 2’ tey, v,
(4.01) ZiNijNui = He, z', u = 1, 2, cr, 0 1 u,

where the treatments ¢ and u are e-associates. These associates are similar to
the associates defined by Bose and Nair [11]. Thus with respect to any treat-
ment whatsoever, all the rest can be divided into two groups of associates with
n, in the first group and 7, in the second. If two treatments are e-associates,
the number of treatments which are f-associates of the first and g-associ-
ates of the second is py, , independent of the particular pair of treatments started
with. The relation of associates is reciprocal. The relations between the param-
eters can be derived, following Bose and Nair, as

(4.1) Sehe =v — 1,

(4.20) 2y D5y = Ny when e # f,
(4.21) =n; — 1 when ¢ = f,
(4.3) MePf = Ny Dge = Ny Dls -

The normal equations for the estimation of treatment effects are (2.5), with

= _1 T M s ...

(4.40) Cii =T <1 A -+ bk> A a, t =12 y U,
=T N ke = oo pi i

(4.41) Ciu N Be U = 1,2 , V31 # u,

where the treatments 7 and u are e-associates.
Following the method indicated by Bose [6], a solution of the normal equa-
tions is found to be

(4.5) ali = Qi — (Bidn + BeAn)@i(d) — (Bidn + B A%)Q:(3),

where Q.(7) denotes the sum of the @’s for all the e-associates of the treatment
1, and (A,;) is the inverse of the matrix (a.;) whose elements are given by

(46) Qe = aaef + Bane + ﬁl p{l + B?pzf ) e)f = 1) 2;

where . = 1 or 0, according as e = fore # f.
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The analysis of variance can be obtained by substituting for ; in Table I

2
(4-7) V(:‘a' - 2u) = %* {1 + BlAle + B2A2c}

if the treatments 7 and u are e-associates.

The designs considered here will be said to belong to the class Y; . The parame-
ters of some useful designs of this class are given in Table IIIa, and the actual
designs in the Table ITIb.

The ratio of the variances of the two different kinds of comparisons is given by

_ 14 B814u + B An
14 B1Ap+ BAn’

We shall now give a number of useful designs belonging to the class Y; . One
set of designs is obtained from the orthogonal series designs with the parameters

(4.8) R

(49) v=§, b=s+s r=s+1 k=s A=1,
the other parameters being

4.91) m = s(s — 1), ne=s8—1, w=s-+ 2 2 = s+ 3,

09 (1)_<s(s—2) s—l) - _<s(s—1) 0 )
(') Pyg) = s — 1 0 ’ pfv)_ 0 8—2’

1

(4.93) R=1+4 g gt

These designs are obtained by using the difference sets of Bose [12]. He has
shown that if (di, dz, - - -, d,) is the difference set corresponding to s, where s
is a prime or power of a prime, then a solution of the balanced incomplete block
design with parameters (4.90) is obtained as follows:

(i) & — 1 blocks are obtained by developing the block (dy, da, -+, ds)
cyclically (mod s — 1);

(ii) s + 1 other blocks are obtained from the block (0, s + 1, 2(s + 1), - -,
(s — 2)(s + 1), =) by adding successively the numbers 1, 2, --- , s + 1,
where « remains invariant under the addition.

To convert this solution into a two-way design of the class Y1, we keep the
s* — 1 blocks (i) unchanged. Also the first two blocks of (ii) are kept unchanged,
but in the others « is successively moved to the left. Finally replace « by
&% For example, the difference set corresponding to s = 3 is (1, 6, 7), and hence
the blocks of the design corresponding to s = 3 are (1, 6, 7), (2,7, 8), (3, 8, 1),
(4-; 19 2)’ (5’ 2; 3); (6, 3, 4), (7; 4, 5), (8, 5; 6); (1; 5, 9)7 (2, 6’ 9)) (37 9’ 7)7 (9) 4’ 8)'

The method of identifying the associates is easy. Divide the treatments into
sgroups: (1,2, --+,8), s+ 1,8+ 2,-+-,28), -+, (" —s4+ 1,8 —s+ 2
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-++, 8. Any two treatments are 1l-associates if they are in the different group
and 2-associates if they are in the same group.
Bose’s difference sets for s = 2, 3, 4, 5, 7, 8, and 9 are given below.

s Diﬁerence; set
2 1,2

3 1,6,7

4 1,3, 4,12

5 1, 3, 16, 17, 20

~I

1,2, 5, 11, 31, 36,38
8 1, 6,8, 14, 38, 48, 49, 52
9 1, 13, 35, 48, 49, 66, 72, 74, 77

The parameters of some other designs of the class Y; are given in Table IIIa.
The corresponding blocks are given in Table IIIb. In each case the treatments
can be divided into a number of groups such that the treatments in different
groups are l-associates, and treatments in the same group are 2-associates.
These groups are also shown in Table IIIb.

TABLE Illa
Some designs of the class Y,: Parameters

v, b, 7, k, A,

Reference no. R (ny) (p},)

1 10, 15, 6, 4, 2,
5, 4, 8, 10, 67/65

O
(=2
S >
W o
N

2 6, 10, 5, 3, 2,
4, 1, 8, 9, 39/38

Lol -}
O
(=3
(==}

3 8 14, 7, 4 3,
6, 1, 12, 13,  83/82

O
[=N~]

N | N | N | N | S | N’

4 15, 35, 7, 3, 1,
10, 4, 16, 17, 171/170

(=2
—t
(= =]
w o

> Ot

5 10, 18, 9, 5, 4,
8, 1, 16, 17, 143/142

-
[0 ]
o o

S | S | N | N | S

O =

6 16, 24, 9, 6, 3,
8, 7, 12, 15, 57/56

~N o
o
(=T ]

ANl AN | AN AN A~ o~
=

AN TN AN AN N~
oo

(=23
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TABLE IIIb
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Some designs of the class Y,1: Blocks and groups for identifying associates

Reference no.

Blocks

Groups

1 Develop the blocks (11, 21, 42, 41), (21, 12, 31, | There are two groups.
45), (12, 21, 22, 32), (mod 5), keeping the suf- Treatments with the
fixes fixed same suffixes belong

to the same group

2 ,2,3), 4,3,2), @3, 5,4), 6,5,4), (5,6,2), | There are three groups:
(3 b )’ (2’ 4’ 1)) (1’ 6’ 3)’ (4’ 1’ 6)’ (5’ 2’ 1) (17 2)’ (3’ 4)’ (5’ 6)

3 Develop the block (3, 5, 6, 7), (mod 7), There are four groups:
and add the blocks (8,2, 1, 4), 8,5,3,2), B,.| (@,2), 3,4, 5,6),
8,4,6), 4,8,7,5), (5,6,8,1), (6,7,2,8), (7, “,8)

1,8,3)

4 @,1,3), 4,1,5), 4,6,2), 8,9,1), (12,8, 4), | There are three groups:

(8, 10,2), 3, 13,14), (5,11, 14),(13,6,11), (14, a,2,38,4,5),(6,7,8,
7,9, (7,11, 12), (7, 13, 10), (6,7,1), (2,5, 7), 9, 10), (11, 12, 13, 14,
4,7,3), (1,10,11), (11, 3, 8), (2,9, 11), (5, 8, 15)
13), (1,12,13), (9,4,13), (12,2, 14), (14,6, 8),
(10,14, 4), (3, 5,12), (15, 10, 5), (6, 15, 9), (15,
8,7), (11,4, 15), (13,2,15), (1,14,15), 3, 5, 6),
9, 3, 10), (5, 9, 12), (10, 12, 6)

5 (8,2,4,10,6), (7,8,10,2,1), (3,8,9,4,7), (9, | There are five groups:
10, 1,8, 5), (2, 5, 1, 10, 8), (10, 3, 4, 1,6), (6,1, a, 2), @, 4), G, 6),
9,5,4), (5, ,8, ,9),(1673,8,(, »2,7, 7, 8), 9, 10)

10), (5,10,38,9,7), (6, 7,2,9,1),(9,1,8,4,2),
4,5,8,3,2) (7 ,5,3), 3,9,10,6,8), 8,
77 5’ 17 4)’ (07 b ’ ’5)
6 ,2,7,8,18,14), (5, 13, 14, 12, 6, 11), (3, 10, | There are two groups:

13,9, 4, 14), (5, 6, 3, 15, 16, 4), (7,9, 8, 10, 16,
15), (1, 2,15, 16, 12, 11), (6, 3, 1, 15, 8, 13), (7,
15, 5,13, 10, 12), (9, 11, 4, 13, 15, 2), (14,7, 4,
16,2, 5), (8, 14, 6, 9, 11, 16), (12, 3, 1, 10, 14,
16), (16,4, 6,1,13,7), (10,8, 16,11, 5,13), (13,
16,2,12,9, 3), (8, 5, 2, 14, 3, 15), (15, 12,7, 6,
14,9), (11,4, 10, 14,15, 1), (6, 5,9, 2, 1, 10), (3,
1,5,7,11,9), 4,1,8,5,9,12), (4,7, 38, 11,12,
8), (2, 8, 12, 4, 10, 6), (2, 6, 11, 3, 7, 10)

1,2,8,4,5,6,7,8),
©, 10, 11, 12, 13, 14,
15, 16)

6. Partial and extended partial Youden squares. We have seen how balanced
incomplete block designs can be used for obtaining designs for two-way elimina-
tion of heterogeneity. In this and the following section we shall consider the
use of partially balanced designs [11], [13] for the same purpose. The case when
b = v has already been considered by Bose and Kishen [14]. They call these
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designs partial Youden’s squares. In this section we shall consider the case
b = mv, r = mk, when m > 1; we may call these designs extended partial
Youden’s squares.

TABLE IV

Cyclic solutions to partially balanced incomplete block designs leading to
partial and extended partial Youden’s squares

Refer- v b , &
’ ’ ’ ) 1 2 B
ence e (ps,) (p%,) Solution
no.
1 13, 13, 3, 3, 2 3 3 3\| Develop (mod 13) the block
6, 6, 1, 0 3 3 3 2 1, 3,9).
2 15, 30, 6, 3, 9 2 12 0| Develop (mod 15) the blocks
12, 2, 1, O 20 01 1,7,9) and (1, 12, 15).
3 15, 15, 4, 4, 9 2 12 0\| Develop (mod 15) the block
12, 2, 1, 0 20 01 1, 3,4, 12).
4 17, 17, 8, 8, 3 4\ [ 4 4\| Develop (mod 17) the block
8, 8, 4, 3 4 4 4 3 1,9, 13, 15, 16, 8, 4, 2).
5 24, 24, 5, 5, 1 3 20 0\ Develop (mod 24) the block
20, 3, 1, 0 0 0 2 @, 3, 16, 17, 20).
6 25, 50, 6, 3, 5 6 6 6\ Develop (mod 5, 5) the
12, 12, 1, O 6 6 6 5 blocks (1, 5), (1, 4), (3,
Dland((3,5), (3,2), 4,3)].
7 26, 26, 9, 9, 22 1 (24 0Y) Develop (mod 26) the block
24, 1, 38, 0 10 00/l (1,28, 11,18, 20, 22,
23).
8 29, 29, 7, 7, 7 77 ‘ Develop (mod 29) the block
14, 14, 2, 1 7 7 6/, (1,16, 24,7, 25, 23, 20).
9 48, 48, 7, 7, 36 5 42 0\; Develop (mod 48) the block
42, 5, 1, O 50 0 4 1, 2, 5, 11, 31, 36, 38).
10 63, 63. 8, 8, 49 6 56 0\ Develop (mod 63) the block
56, 6, 1, 0 6 0 05 (1. 6, 8, 14, 38, 48, 49, 52).
1 80, 80, 9, 9, 64 7 72 ' Develop (mod 80) the block
72, 7, 1, O 70 0 | 1, 13, 35, 48, 49, 66, 72,
: 74, 77).

Suppose there exists a partially balanced design with [ different kinds of

associates, and parameters v, b, r, k; M, Na, 00,
, ). When b = mo, r

g=12,-

)‘l;n17n2)
= mk, then Smith and Hartley’s process

y M s p;a (e’ f’
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can be used just as in Section 3 to so modify the design that each treatment
occurs just m times in each row (the columns constituting the blocks). In this
case we have

_ r dm’ v A

(5.0) c,;—r(l—i—l;k) - E_r<1 I_c>—a’
m® A, P .

(5.1) = =N T e g

b kW ko
so that the normal equations take exactly the same form as for partially bal-
anced incomplete block designs. Hence a solution of the normal equations is
given by equations (4.5) and (4.6) of Section 4, with « and 8. now given by
(5.0) and (5.1). The equation (4.7) is also valid. In case there are only two kinds
of associates, the ratio of the variances of the two kinds of comparisons is given
by (4.8).

When a cyclic solution to a partially balanced incomplete block design with
b = mw, r = mk is available, then it can be directly used as a two-way design
without further modification, A number of cyclic solutions have been given
by Bose and Nair [11]. Cyclic solutions to a number of new designs are given
in Table IV. In each case I = 2.

6. Other two-way designs obtained from partially balanced incomplete block
designs. Under certain conditions it is possible to use a partially balanced de-
sign with two types of associates to give a two-way design with two types of
accuracies even when b is not an integral multiple of ». The necessary condition
is

(6.0) =mn+1 or ng+ 1.

b
r

e

In this case it has been found that in all cases of practical interest we can,
by suitable interchanges within columns, arrange that

(6.1) =0y = d, i=1,2,-,0,
(6.2) ZNij Nuj = Hey. Lu=12--,0,t % u;e =12,

where two treatments which are e-associates for the columns are also e-asso-
ciates for the rows.

In this case
(6.3) cii=r<1+l§c>—g—£=a, i=1,2 -,
A 7
(6.4) Ciu=—'%6—]f+5‘]‘c=ﬁea Lhu=12"-,0;%7 U

The analysis is the same as in Section 4, the equations (4.5), (4.6), (4.7), (4.8)
remaining valid but « and 8 now given by (6.3) and (6.4). The analysis of vari-
ance is obtained by substituting for #; in Table I.
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The designs considered here may be said to belong to class Y, . Some designs
of this class are given below in Tables Va and Vb. The parameters are given
in Table Va whereas the actual solutions appear in Table Vb. In this case the
representation is such that two treatments in the same group are l-associates,
whereas two treatments in different groups are 2-associates. These groups are
also shown in Table Vb.

TABLE Va
Some designs of the class Ys: Parameters
Reference v, b, r, k, N, N 1 2
no. M, A, . d (vs,) (vsq)
1 12, 10, 5, 6, 1, 10 0 0 01
5, 2, 5 4, 5 0 10 18
2 15, 25, 5 8, 4, 10 3 0 0 4
o, 1, 11, 7, 1 0 10 45
TABLE Vb
Some designs of the class Yo: Blocks and groups for identifying associates
Reference Blocks Groups
no.

1 8,11,5,7,1,2), (2,3,1,8,7,9), (3,4,10,9, | There are six groups: (1, 7),
2,8), 4,10,11,5,9,3), (5,1, 4,11,10,7), 2,8), 4,9), 9,10, 5,11),
(,5,8,2,12,11), (9,12,7,6,3,1), (10,6, 2, 6, 12).

12,8,4), (11,9,12,3,6, 5), (12,7,6,1, 4, 10)

2 (10,6, 4), 3,7, 5), (11,2,13), (1,9, 8), (14, | There are three groups: (1, 3,
12,15), (11,12, 5), 3,6, 8), (14,7,4), 10,9, |  10,11,14), (2,6,7,9,12), (4,
13), 1,2,15), 1,7,13), 3,2,4), (10,12,8), | 5, 8, 13, 15).

(14,9, 5), (11, 6,15), (15,3, 9), (4,1,12), (5,
10, 2), (8,11, 7), (13, 14, 6), (2, 8, 14), (6, 5,
1), 9, 4,11), (7, 5, 10), (12, 13, 3)

My sincerest thanks are due to Professor R. C. Bose, under whose guidance
this research was carried out.
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