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To. prove this let » be a vector (u; , - - , u,). Let U be the set of u such that

the property described in (4) holds. We have

5) Pluc U= [ I_Il dFlu;, ).
Let z; = Flu; ; J@)l, 2 = a1y -+, 2)

©) Plue Ul =n!/zdz,
where |

zeZ if max|z —j/n| <X and mz'a‘xlzj—‘(_i+1)/n|<)\..
J J

Since (6) does not depend on F(z, y), the probability is the same for.all F(z, y)
with the given properties. Nor does (6) depend upon the particular choice of
f).

The expression (5) is the probability distribution of the type (1) for the single-
variable distribution Flz, f(z)]. We can test the hypothesis that a given random
sample was derived from a particular distribution by means of the maximum
deviation of the distribution from the step function' derived from the sample.
Values of the probabilities have been tabulated by Massey [1].
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ON THE NECESSARY AND SUFFICIENT CONDITIONS FOR THE
CONVERGENCE OF A SEQUENCE OF MOMENT
GENERATING FUNCTIONS

By W. KozAKIEWICZ
University of Montreal

In a previous paper ([1], pp. 61-69) the author studied the reciprocal relation
between the convergence of a sequence of df’s (distribution functions) and the
convergence of the corresponding sequence of mgf’s (moment generating func-
tions) in the univariate case. It is the purpose of the present paper to give neces-
sary and sufficient conditions for the convergence of a sequence {p.(f , &)} of
mgf’s in two dimensions. The results can be extended to Euclidean spaces of
higher dimensions.
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MOMENT GENERATING FUNCTIONS 479

Let {F.(z1, z2)} be a sequence of df’s. For ;"> 0, let

A'"[n(xl) xZ) = f/ an(uly u2)7
|us| 22zs

and designate by M (21 , x) the least upper bound of the sequence {M (21, 22)}.
TreorEM 1. If the sequence {F.(x1, x2)} converges on an everywhere dense
set and if there exist numbers ay , az such that for | ;| < as,

1 : Mz, 22) < Kexp (—|t|a1— || 20),

where K s independent of x, and x, , then
(a) there exists a df F(x,, x2) such that

) lim Fo(z1, T) = F(m, 2)
at each point of continuity of F(x1 , x2),
(b) the mgf’s of F(x,, x2) and Fa(xy , 22, say o(t , &2) and ¢n (b1, i), exist for
[t < oy
j bz )
(¢) Lim @u(ti, ) = o(t, t) for |t:| < a; and uniformly in each interval

It.-l < Bi < a;.

To prove (a), notice that there exists a function F(z , x,), continuous to the
right and with nonnegative second difference, such that (2) holds at each con-
tinuity point of F(x; , z2). From (1) we see that F is a df.

Now let 8; < v: < a; (¢ = 1, 2), and denote by R, , for z > 0, the region
| 2:| < 2. Let k and [ be integers such that { > & > 0. Then, from (1), we find
that, for | | < 8:,

o Moo Gt ) e,
1—Eg

< Clexp [(B1 — vDk] + exp [(B: — v2)E]},

where C is independent of £ and (.

The relations (2) and (3) imply the truth of (b) and (c). Thus Theorem 1 is
proved.

TuroreM 2. Let {F,(z; , x2)} be a sequence of df’s and let {on(t1, t)} be the cor-
responding sequence of mgf’s. If ou(ti , t2) extst for | t;| < o, and if there exists
a finite valued function o(t, , t2) such that limu—, ¢x(t, &) = (1, &), | t: | < as,
then

(a) the inequality (1) holds for | ;| < o,

(b) there exists a df F(x1, xs) such that (2) holds at each continuity point of
F (xl ) x?) ’

() for | t;| < as, the mgf of F(x:1 , a2) exists and equals o(t , t2),

(d) im @n(ts, t2) = o1, to) uniformly for |t:;| < Bi < a; z=1,2).
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To prove (a), note that for | &;| < a;, 2, > 0, we have

ff.z .an(uly u?) SeXp (—ltllxl— I{z'ﬂ)z)
(4) + £
ff exp (| & w4 |t | u2) dFa(ur, us) < Moexp (—| |21 — 2] 22),
ug=zxs

where ¢.(| 1], |&2]) < M,. Such a number M, = M4, &) exists since
{en(t1|, ] t2|)} converges for | £;| < a;. This gives an estimate for M, (z; , 2»),
which shows that (a) holds. The Helly selection principle ([2], pp. 60-62 and
83) leads to (b). The relations (¢) and (d) follow immediately from Theorem 1.

From Theorems 1 and 2 we obtain

TaEOREM 3. Let {Fn(x1, 22)} be a sequence of df’s and let {oa(ty, &)} be the cor-
responding sequence of mgf’s which are all assumed to exist for | t;| < a;. Then the
necessary and sufficient condition for the convergence of {on(ty, t2)} for | t:| < as
18 that the relations (a) and (b) of Theorem 2 be satisfied.
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A NOTE ON THE MAXIMUM VALUE OF KURTOSIS

By H. C. Picarp’
University of Ghent

In “A note on skewness and kurtosis,” J. E. Wilkins (Annals of Math. Stat.
Vol. 15 (1944), pp. 333-335) gave a short and elegant proof of the inequality for
skewness and kurtosis

(1) B: > B + 1.

Then he gave an upper bound, depending on the population size N, for the skew-
ness:

) max f; = (N — 2)/(N — 1)},

Now we shall derive an upper bound for, the kurtosis. It will appear that the
sign “=""in (1) is valid for the upper bounds, and the two maximum values
indeed arise in the same “extreme” population.

To find the maximum value of the kurtosis 8. we consider the function Sz}
in the 2-space, where Zz% = N and Zz; = 0. We have to maximize Sz — A3z —
pZz; . The maximizing values are given by the N equations, found by differ-
entiation with respect to x:

(3) 4ot — 2Ny — p = 0,
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