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ON ¢-COMPLETE CLASSES OF DECISION FUNCTIONS'

By J. WovLrowirz

Columbia Unaversity

An example of an “almost subminimax” solution® is given in a paper by
Hodges and Lehmann ([1], Section 5, Problem 1). Another paper, written
independently by Robbins [2], has put much stress on the idea and given a
considerable discussion and many examples. Frank and Kiefer [3] have given a
prescription for constructing almost subminimax solutions.

Let @ = {F} be a set of distribution functions F. The statistician has to make
one of a set of decisions in a space D* = {d!}. He takes observations in stages
(finite subsets) on an infinite sequence of chance variables X = X;, X,, ---,
distributed according to an unknown one of the F’s. The statistician employs a
decision function §, a rule (which may involve randomization) which tells him
when to stop taking observations and what decision to make when he has
stopped taking observations. The risk (I, §) of a decision function (d.f.) &
when F is the distribution function of X is the sum of the expected values of the
cost function and the loss function. All these ideas are described rigorously
and in detail in the book [4] by Wald, whose notation we adopt. Some familiarity
with this book and its ideas will be assumed. The brief résumé given in this
paragraph was partly for the purpose of recalling some of the important notation.

An almost subminimax d.f. 6* may be roughly described as follows. Let 6** be,
say, an admissible minimax d.f. For all F’s in @ we have r(F, 6*) < r(F, §**) + ¢
with e “small” and positive, while for “most” F’s in @ we have r(F, §**) — r(F, *)
equal to a “large” positive number.

An important task of the mathematical statistician is to exhibit a complete
class of d.f.’s for a problem under consideration; an essentially complete class
is even more useful’. The choice of d.f. from among the members of an essentially
complete class requires additional principles. A possible principle is to choose a
minimax d.f. (There may be more than one minimax d.f., and even more than
one admissible minimax d.f.) This might be the course of a very conservative
statistician whose ignorance of F' is complete. The appeal of an almost sub-
minimax d.f. in preference to a minimax d.f. occurs when the statistician considers
e small, or the F’s for which »(F, 6*) > r(F, §**) rather “unlikely,” or both.
There will usually be little difficulty in deciding when e is small, but perhaps
considerable difficulty in deciding that some “few’” F’s are ‘‘unlikely’’ and
just what is to be done about them.

Let € > 0 be a fixed number. A d.f. §; will be called e-equivalent to the d.f.
& if | r(F, 81) — r(F, &) | = efor all F in Q. (The relation of e-equivalence is
obviously not transitive.) A d.f. 6; will be said to be e-better than the d.f. &, if &,
and §; are not e-equivalent and if »(F, 8;) < r(F, &) + € for every F in Q. A

1 Research under a contract with the Office of Naval Research.
2 This represents a slight change in nomenclature from that of Robbins’ paper [2].
3 Provided, of course, that it is not complete.
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class C of d.f.’s will be called essentially e-complete if, for any d.f. §; not in C,
there exists a d.f. §; which is a member of C and is such that either é, is e-equiva-
lent to §; or &, is e-better than & .

If an almost subminimax d.f.-6* exists, then * is e-better than the minimax
decision function 6**. If the statistician regards differences of at most ¢ in the
risk function as negligible, and differences larger than e as meaningful, he will
prefer 6* to 6** and this preference will not depend upon which F’s are ‘“‘few’” or
“unlikely.” We shall show that under certain conditions there exists an essentially
e-complete class Co which contains only a finite number of elements, and in the
next paragraph we will formulate the conditions precisely.

We shall assume that Assumptions 3.3 to 3.7 of Wald [4] hold, and in addition
that the available d.f.’s are all such that

1) r(F,8) < « forevery FinQ;
2) lim >, P;(F, ) Sup c(z; s =0
k—® j=k z,87

uniformly in & and the F in Q. Here P;(F, §) is the probability according to
Fthat, when é is employed, a decision will be reached in exactly j stages of
observations, and s’ is any j-stage set of observational indices such that the
cost function ¢(z; s) is not + « identically in z. It follows from Assumptions 3.5
(II) and 3.6 (III) of [4] that Supa,.; ¢(x; s%) is always finite. Equations (1) and
(2) are essentially Condition 7 on page 298 of [5]. Note that the statistician may
use d.f.’s which require no observations at all.

Under these conditions we shall prove that there exists an essentially e-
complete class Cy whose elements are finite in number.

Define

(3) plr(FlyF2)=S%plP{RlF1}_~P{RIF2}I7

where R is any Borel set of the r-dimensional Euclidean space, and

CY) pe(Fy, Fy) = E‘:}B | W(F,, d) — W(F.,d" |.

Finally, let »

) pEF) = s, F) + 3 2 mlF, F).

It follows easily from Assumption 3.7 that @ is compact in the sense of the

metric p(Fl , Fz).
Let € > 0 be given arbitrarily. There exists an m = m(e) such that

(6) s;'lap | r(F, 8™) — r(F, ) | < 6‘_4
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where 6™ is the d.f. & truncated (in any manner whatever) after m stages of
observations. In m stages of observations one can have observations only on the
chance variables X;, -+, X,,», where m* is a finite-valued function of m.
Just as in the proof of Theorem 8.3 of [4], one proves that r(F, ™) is continuous
with respect to the metric p (F , F) uniformly with respect to all available ™. We
conclude from (6) that there exist a finite number ¢ of F’s, say Fy , -+, Fr,
with the property that for every F in Q there exists some element F; such that

@ Sup | £(F,8) — £, ) | < 2
for all available é.

We now define
® n(di, dy) = Sup | W(F, dy) — W(F, dy) |.

FE

There exist a finite number of elements dt, say g1, * - - , g1, such that for every
dt in D' there exists an element g; such that n(d?, g;) < ¢/64. We shall now
temporarily limit the statistician to decisions in D* = {g;, - -, ¢:}. This means

that a d.f. 8 is to be replaced by §*, where §* is derived from ¢ in the following
manner: § and 6* are the same except that, whenever § tells the statistician to
make a decision d¢ in D¢, §* tells the statistician to make a decision in D* nearest
to d* in the sense of (8). Obviously,

€
9 | r(F, 8) — r(F, 8% | < -
for every available § and every F in Q.
Consider now the following statistical problem: Q* = {Fy, ---, Fa} and
D* = {g,, ---, g1} are the spaces of distributions and decisions, respectively.

The statistician is allowed at most m* observations in various possible steps.
The cost function and other assumptions are as before. It follows that the set S
of points in Euclidean g-dimensional space {r(Fy, 6*™), -+, r(F,, 8*™)} for
every available 6*™, is bounded and convex—bounded because the loss and cost
functions are bounded and convex because the totality of available d.f.’s is
convex. Obviously a finite number of decision functions corresponding to a
finite number of points of S which lie close to the periphery of S constitute an
essentially e¢/4-complete class for the Q*, D* problem with respect to all available
d.f.’s which permit at most m stages of ‘observations, and with respect to all
d.f.’s which can be obtained from an available d.f. by truncation at the mth
stage. Call the resulting class Cj .

It remains to prove that Cj is essentially e-complete for the problem @, D*,
and with respect to all available decision functions. Let 8 be any d.f. not in Cj ,
and consider the d.f. 8™ . There are now two possibilities: (a) 8 ™ is ¢/4-equiva-
lent to some member % of Cy with respect to the problem Q*, D*; (b) 8¢ ™ is not
¢/4-equivalent to any member of C, with respect to the problem Q* D*.
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Suppose (a) holds. Let F be any element of Q. By use of (7) we obtain that

(10) o, 8™ — +(F ) | < 26
32

From (9) we have

(1) e, o) — r(F B | < 23
64

Finally from (6) we have that

(12) 100 — (B, 1) | <,

so that & and h are surely e-equivalent.
Suppose now that (b) holds. Let ¢ be ¢/4-better than 8™ with respect to the
problem @* D*. For any F such that there exists a nearest Fi for which

(13) [P ET) = )| < g

we have, just as in the previous case,
3¢
g

If for some F' (13) does not hold we must have, for a nearest FT , since ¢ is ¢/4-
better than 8; ™ with respect to the problem Q*, D*,

(14) | 7(F, 80) — r(F, ) | <

(15) r(EF, 87 > 1) + 5.
Now
[T, 0) = 1 G | < 2
| r(F, ) — r(FF, ) | < 3¢,
’ © 64
Hence
(16) r(F, 80 > r(F, 1) + § )

Since either (14) or (16) must hold we conclude that ¢ is either e-equivalent to
8 or ¢ is e-better than & . This proves that C, is an essentially e-complete class
for the original problem.
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ALMOST SUBMINIMAX AND BIASED MINIMAX PROCEDURES!

By P. Frank AND J. KIEFER

Columbia University

Robbins [1] emphasized the notion of an “almost subminimax”’ procedure’ and
gave an example of such a procedure. The examples in this paper have been con-
structed with a view to simplicity and to the indication of *he underlying mecha-
nism which makes subminimax solutions exist in certain decision problems. At the
same ime we point out another potentially undesirable property of a minimax
procedure—biasedness.

All our examples fall within the following framework. A sample of one is
taken from a population whose distribution is one of n given distributions:
Fi(z), Fo(x), « -+ , Fa(x). There are n decisions: d; , - - - , d, . The weight function
isW(F;,d;) = 0if ¢ = j and = 1 otherwise. Instead of a finite number of F’s, we
may have a sequence of F’s with a corresponding sequence of decisions. In all
our examples each of the F’s will be a uniform distribution over a finite interval
of the z-axis, and our decision procedures will be randomized. These restrictions
are made only for arithmetical simplicity.

With this setup, the risk when F'; is the true distribution is equal to the proba-
bility of not making decision d; , which we will denote r(F;). We will not give an
exact definition of an almost subminimax procedure, but just say that a procedure
is almost subminimax if its maximum risk is “a little greater” than that of the
minimax procedure (which risk is the same for all minimax procedures in our
examples) and on the other hand its risk is “a lot less” than that of the minimax
for “most of ”” the F’s. Our examples will conform with this “definition” for almost
any reasonable interpretation of the phrases in the quotes.

The first example will give an indication of the mechanism which makes a
subminimax example possible. Let Fi(x) be the uniform distribution on the
interval 1 — a to 1, where @ > 0 and small. Let Fs(z) be the uniform distribution
on the interval 0 to 1. An admissible minimax procedure to decide between d,

1 Research done under a contract with the Office of Naval Research.

2 The examples of this paper fall into the framework of the definition in [1] of an ‘‘asymp-
totically subminimax solution’’ if each example is replaced by a sequence of examples whose
«’s approach zero. The present nomenclature was suggested as more suitable here.



