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REGRESSION MATRIX!
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Summary. Hotelling’s [1] theoretical findings in mathematical economics on
the rational behavior of buyers in maximizing their net profit indicate that the
matrix of the first partial derivatives of a set of related demand functions would
be symmetric and negative definite. It is the object of this paper to determine
whether the assumption of symmetry will be tenable in the light of the particular
set of observations. The study of test functions for the property of definiteness
as a whole will form the subject of a forthcoming paper. The present investi-
gation assumes that the demand functions are regression functions and, there-
fore, results obtained in this paper do not cover all types of demand functions.
The test function U proposed here for the hypothesis of symmetry is invariant
under all contragredient transformations. The distribution of U depends on
unknown nuisance parameters. The likelihood ratio under the hypothesis of
symmetry leads to a multilateral matric equation which represents 3 p(p + 1)
equations of the third degree in 3 p(p + 1) unknown regression coefficients for
the p-variate case. It has not been possible to establish the existence of a non-
trivial solution of this equation, and it is, therefore, not being given here.

1. Introduction. Let p; denote the price of the ¢th commodity and ¢; the
quantity consumed at that price. Consider p; = fi(g1, g2, - -+ ) a set of demand
functions and let w = (g1, g2, : -+ ) represent the gross receipts of a purchaser
of goods. Under the assumption that each entrepreneur tries to maximize his
net profit # = u — Zp.q;, Hotelling [1] in an important contribution concerning
the theoretical nature of supply and demand functions showed that if the
entrepreneur is working in a steady economic state in which there is no re-
striction on his money expenditure, then the matrix of the first partial deriva-
tives of prices on quantities would be symmetric, that is,

9ps _ 9p;
dq;  9¢;
and that for a true maximum such a matrix would be negative definite, that is,

ap; - 3(pi, 1)) a(ps, Di s Pr)
— <0, ——2 7 5, AV AER RN L2 APl | N
ag; a(q:, 95) a(qi, 055 Q) ’

1 This paper was presented at the Cleveland meeting of the Institute on December 27,

1948. .
2 The author wishes to express his grateful appreciation to Professors Harold Hotelling

and William G. Madow for guidance in this research.
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514 UTTAM CHAND

It would thus appear that the inequalities arising out of the negative definiteness
of the matrix generalize the conditions that a demand curve shall decline.

No suitable statistical tests have existed for testing the hypothesis of sym-
metry and negative definiteness of the matrix referred to in the previous par-
agraph. Henry Schultz [2] was first to consider such a question and the present
paper has grown out of his statistical attempts. To verify Hotelling’s laws on the
basis of a particular set of data consider

(1.1) Pi = fiqr, @2, **°) + i,

a system of demand equations where p; and ¢; denote current prices and quantities
and where u; is a stochastic variable. We shall assume that the quantities are
fixed and prices are determined by demand. For example, some government
agency could conduct actual experiments fixing alternative sets of quantities
and observing what prices the choice of buyers would lead to. In such a situation
we shall, therefore, be justified in assuming demand functions to be regression
functions. In general the quantities are determined by a certain type of supply
function under the prevailing market mechanism. Suppose the supply func-
tions are given by

(1.2) P; = Qiqr, @2, ) + i,

where v; is a stochastic variable and ’s and v’s have a more or less specified joint
probability law. If (1.1) and (1.2) are to hold simultaneously their solutions, if
they exist, will be the only observable values of prices and quantities; and, there-
fore, quantities such as d¢;/dP; cannot in general be estimated and consequently
no question of testing symmetry could be raised. However we could conceive of a
different type of supply functions from those in (1.2) containing other inde-
pendently determined variables besides the p’s and being of such a stochastic
type that the equations (1.1) would be regression equations [12]. For the purpose
of this investigation we shall assume that the demand equations are regression
equations such that the mathematical expectation of p; is equal to f; and since
not all demand functions are regression equations, the results of the present
investigation are not applicable to all types of demand equations.

Since we are studying certain properties of correlated variables any proposed
statistical criterion must satisfy the property of invariance under linear trans-
formations of prices and quantities. The fact of the transformation of quantities
being not independent of that of prices will further restrict us to the consider-
ation of such relations as are invariant under a linear transformation of one set
of variates contragredient to those of the other ([3], pp. 108-109). The importance
of such a class of relations was first suggested by Hotelling in a series of papers
[4], [5], [6]. Examples of such a ‘“‘value preserving’’ class of transformations may
be found in the mixing of different grades of wheat or the combination of raw
materials and labor into finished products such that the total value remains
unchanged.

The statistic U (Section 4) proposed here for the hypothesis of symmetry for
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the case of two related commodities is invariant under all contragredient trans-
formations. It is exact in the sense that its probability distribution law is pre-
cisely determined under the hypothesis. Certain practically useful relations be-
tween this statistic and Student’s ¢ will be indicated. This test has in addition
the property of being an unbiased test in the sense of Neyman and Pearson. We
consider its p-variate generalization in Section 4.4.

2. Probability model. Let ¥ = || yia || be & p X N sample matrix from a
normal multivariate parent having ¢ = || os; || as the dispersion matrix and
7 = || 7« || = BX as the corresponding matrix of expectations where 8 = || 8:; ||
is the population regression matrix and X = || ;. || is the matrix of nonrandom
observations on the fixed variates (e.g., 1, -+, ¥, may denote prices and
Zi, -+, T, the quantities consumed at these prices): Let ¢ = | gi; || = XY,
where ¢;; = Z. %:Y;« and where Y’ is the transpose of Y. Set a = XX’ and
¢c= el =a @ j=1-,p;a=1---,N;p < N). We shall assume
without loss of generality that y:,’s and z;,’s are either measured from their
means or from polynomial means if the y’s are subject to a time trend. It will
be noticed that the symmetry and definiteness of the matrix of partial deriva-
tives of prices on quantities is equivalent to the symmetry and definiteness of
the regression matrix 3.

3. Contragredient transformation of the two sets of variates. Let f = || f;; || be
a p X p nonsingular matrix and let the columns = of the matrix X be subjected
to the transformation f; we write z* = fz. If the columns y are transformed into
columns y* in such a way that y*z* = y'z for every z and y, then the trans-
formation of the y’s is uniquely determined, viz., y* = f"'y. We say, under these
circumstances, that the columns x on the one hand, and the columns y on the
other hand, are transformed contragrediently under f. For the mathematical
expectation of y*’s we have E(y*) = B*z* where 8* = f"'8f". Consequently
B* = B* implies B’ = B and conversely. Thus we notice that the symmetry of
the matrix 3 is preserved by this type of transformation. Since the property of
definiteness is invariant under any nonsingular linear transformation, the
hypotheses of symmetry and definiteness are invariant and we might as well
consider the properties of the matrix 8*. If we denote by o* = | o¥ ||
the covariance matrix of the y*’s, we have o* = " 'of ' and consequently the
ratio of the determinants | 8| and | o | is an absolute invariant. We now state
the following theorem:

TuaeoreM 1. If o is a positive definite matrix and B a real symmetric matriz and
the two are cogrediently transformed, there exists a nonsingular linear transform-
ation which will reduce o to an identity matrixz and B8 to a diagonal matrix.

Proor. We have 8 = f/8*f and ¢ = f'¢*f and the proof follows from a theorem
given in [3] (p. 171). We shall make use of this result in Sections 4 and 5.

s Hypothesis of symmetry of the regression matrix g.
4.1. The statistic U. We shall show that for the bivariate case the statistic U
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now to be presently defined provides an exact and unbiased test for Hy : 812 = Bat
against the set; of alternatives which do not specify anything except 81z % Ba .
Consider

U = (biz — bu)*(cassu + Cuases — 2¢1251)

where

(i) The sample regression coefficients b;; are normally distributed with means
Bi; and E(be; — Bj)(bmi — Bmi) = 0kmCij.

(ii) The s;/’s are the unbiased estimates, each based on (say) n degrees of
freedom, of ¢;; and follow the Wishart [7] law. Actually we have

N
ns;; = Z; (y;a - Yia)(yia - Yja);

where Y;.’s are sample regression functions.

(iii) The c;/’s have been previously defined (Section 2).

Under the assumption of the conditional bivariate normal law for the y:.’s
(Section 2), the residuals of y:.’s from their respective sample regression func-
tions are normally distributed. If the y..’s are subject to a time trend, as may
very often be the case in economics, it will be more appropriate to consider the
model ’

E(@ia) = a0 + aifa(t) + c2bo(t) + -+ + Ba(®ra — &) + Ba(te — &),

where the £(t)’s are known polynomials in time. Under such a model also residuals
are known to be normally distributed. Consequently we might as well have
assumed such a model which will thus only affect the number of degrees of
freedom available for the estimates s;; .

TreorREM II. If 2 and y are transformed contragrediently, the statistic U is an
absolute invariant.

Proor. Set s = || s;; || and b = || bi; || . Under the contragredient transforma-
tion of x and y (Section 3) we have b = f'b*f; s = f's*f; and ¢ = f'c*f. If we
perform this transformation on U and simplify, we notice that the numerator
and denominator of U are relative invariants of weight —2 and consequently
U is an absolute invariant.

4.2. Distribution of U under the null hypothesis. Since U is an absolute invariant
under the contragredient transformation of x and y we may derive the distribu-
tion of U taking ¢ to be an identity matrix and 8 to be a diagonal matrix (Theo-
rem I) in the parametric space.

The numerator and denominator of U are distributed independently of one
another [8]. Let Z = cnsu + cuss — 2ci2812 . This is a positive definite quadratic
form in normally distributed variates. Let u. and v. represent residuals of y, and
ys from the corresponding sample regression functions. There exists an orthogonal
transformation of the N variables 4. and v, which will simultaneously yield
sit = Ziun/n; sm = 21vit/n and s = Zfuivk/n, where u* and v* are normally
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and independently distributed with 0 means and a common variance for each
set u*, v*. Consider now the orthogonal transformation

* K .
Ugq COS 0 — v, SIn 6,

!
Ua
’ ‘% *
Vg = Ugq SIn 0 4 v, cos 6,

n 12,

where 8 is so determined that nZ = diZfu.’ + dZve; ; then
di = Leu + e + [(en — )’ + 4612]’},
dy = %{Cu + ¢ — [(Cu - 022)2 + 46%2]*}-

Consequently U = xi1(Cixz.»n + Cixs.»)”' where the x¥’s have independent
x’-distributions with degrees of freedom as indicated in the second subscripts and

= @) ML+ 11 — 4]cl/(en + e,
= @)1 — [1 — 4] c|/(cu + en)T),

and l Cl = CuCx — cla .

The distribution of a quantity similar to U was first obtained by Hsu [9]. An i m-
dependent derivation of the distribution of the quantity » = Qo + Mxd)
where \;, \; are certain positive constants and ¢ is N(0, 1), will also be found
in [10]. Robbins and Pitman [11] have obtained general results for the distribu-
tion of the ratio of mixtures of x™s, of which the form (4.2.1) given below is a
particular case.

We have the following two forms for the frequency function of U:

go(U) = [B(n, DUN(Co/CH™ €A + C:T) ™

(4.2.1) 02/01)

F("’"‘%y%n:n’ 1+ GU

for any value of n, and
$n—1
w0) = U 5 (TAmE@TEn — BTG+ D) TG+ 1 - B

(4.2.2) TGn + h)(C; — Oy
(=DM OO + CDY I 4 (— 1AL 4 CUYH,

for n even [10].

We notice that since C; + C; = 1/n, the distribution of U essentially depends
on C; or C; and is, therefore, precisely determined by 7 and the quantity ¢/ (tr c)*
(=a/@r @)®) = w (say). If w > %, C; and C; are both imaginary. When the
matrix ¢ is a 2 X 2 matrix, the truth of the relation 0 < w < % can also be
verified independently. The relation (4.2.1) is not defined when C; = 0, ie.,
when w = 0; however it is clear from the form of U that it is distributed as
Student’s ¢ with n degrees of freedom. If w = %, C; = = 1/(2n), and U has
the & distgibution with 2n degrees of freedom. We shall refer to this again in the
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next section where we examine the overall behavior of the probability of Type
I error of U with respect to w.

4.3. Probability of Type I error of U. To derive P = P(U > U,) corresponding
to the form of the frequency functlon (4.2.1) we put ¢ = (1 + CU)™" and
after integration obtain

P = (Cy/C)* 1 1 (1 = C,/CY)
(4.3.1) (C/Cy ,Z;P("Jrh)ﬂ‘( n)T(h + 171 — Co/C)

'I{‘o(n + h‘i %)7

where I;,(p, ) is the incomplete beta ratio and ¢, = (1 4+ C2Us)~". The series
(4.3.1) consists of positive terms and is absolutely and uniformly convergent.
Corresponding to the form (4.2.2) for even degrees of freedom we similarly
obtain

in—1

P =Y TGn+ h@EWTGR + 1)) — ¢)™F
(432) i=t

J(=1)tetCi Iy Ge — b, D) + (—DrOCi LG — By ),

where ¢ = (1 4+ CiUo)™
Consider the series (4.3.1). Following Robbms and Pitman [11] if we set

= (Co/CO"T(n + B)(1 — Co/COMTGm)T(h + 1],
so that =¢ d» = 1, we have

p b4
0<P - Fale+hd < (1= 5h) e+ 26+ 0,1,

For any given U, this inequality sets an upper bound to the error committed in
P in stopping at the (p + 1)st term of the series (4.3.1) which has been found
to be slowly convergent. Whenever » is even and not large, the finite form
(4.3.2) is to be preferred for computational purposes.

We now state the following theorem concerning the dependence of the proba-
bility of Type I error of U on the variable parameter w:

TaeoreM II1. For any n and fixed Uy , P(U > U, | Hy) s a monotone decreasing
function of the variable parameter w.

Proor. We shall prove this result by considering the derivative of P with
respect to w. From (4.3.1) we obtain

9P (/€)™ ~ 4w 3 TGn + WIGDTG + 117

-[4(1 + (1 = 40))Ty(n + By B (3n(L — Co/C)* —h(Co/CD(A — Co/CY™)

o Co/Ca(l — Co/Co)'¢E*™ (1 — i — a - 4w)*)“]
B(n + h; 2) ’
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which may actually be shown to represent a derivative. Following Hsu ([9],
pp. 14-15) the series
2.TGn + HTET(R 4 D)"Br(l = Co/C)" — h(C2/C(1 — C/C)*]

“ Lo+ 1 )
can be shown to be equivalent to
22Gn + BEEWT(R + 1D)7TEn + k) (L — Co/C)'m,
where
m= (0 + B = 0)/BO + h, }) = Iy + £, B)
—Iyy(n +h + 1, 3).

After some simplification we obtain

ZTIZ = (1 — 4w)(Co/CY" (0™
(433) 3= 00 + DOGITG + D)7 = /0

‘Bn(1 — 2nCy) + A1 — nC)lns.

The terms of the series (4.3.3) will be negative in the beginning but will finally
become positive. Let the (r + 1)st term be the first positive term. Since 74 is a
monotone decreasing function of 7 we have

g < ml = 4w) X (Co/CY"HnC)™

32 Tln + MEETG + D)7 - C/0
[in(1 — 2nC1) + (1 — nCY)]
= 2,(1 — 4w)H(Cy/C) T (2nCD)
(1 = 200 (Co/C)™ + (1 — Co/CH(A = nC)(Co/C)™ ]
= 0.

This proves the theorem except for the end point w = 0 of the interval 0 < w < %,
for which the series (4.2.1) and consequently (4.3.1) are not defined. To cover
this point we need only to note that the cumulative distribution function (cdf)
of the statistic U = xi1((1/n)x3.» + Ca(x3.n — X3.,))"" is a continuous function
of C; and that when Cy — 0, the cdf of U tends to the cdf of Student’s ¢ for n
degrees of freedom.

Having established the monotone nature of P with respect to w we are now
in a position to assert that U could be regarded as Student’s £ with degrees of
ffeedom lying between n and 2n.
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44 A p-variate generalization of U. The reader will at once recognize the
following technique for obtaining the generalization of U to the p-variate case
to be similar to that of obtaining Hotelling’s T from the ordinary Student’s .
Consider

By = oybis + a2 b13A+ agba + -+ + Qip(p-1) bo—1.p
Ba = a1ba + aebsy + asbss + -+ + aypp—1) bpp-i-
Let A denote the sample covariance matrix of the ip(p — 1) symmetric
differences. Define row vectors
o = (0(1,0(2,"'), by = (bu,bm,"'), b, = (b21’b31"")
and let o, by , by denote the corresponding column vectors. If we regard o’s as
constants, then
(Bl2 - B21) [a<b1 - b2)]
~ Estimated var(By; — Bn) alAd
is also distributed like U. If we determine a’s so as to maximize AU we at once
find that « « (b; — b))A™" and we have
= (b1 — b)A™ by — by,
which reduces to U when p = 2. It can be shown after a very laborious simplifica-

tion that A is also invariant under all contragredient transformations. The
distribution of €U is still under investigation.

4.5. The power function of U and its unbiased character. If we let

6 = (B2 — Bar)(Ccazon + o — 20120'12)_%,

we shall presently see that except for the noncentral x* in the numerator the
non null distribution of U is similar to its null distribution. We shall first indicate
the results that can at most be accomplished in the non null case by the contra-
gredient transformation of y and z. Noting that under this type of transforma-
tion B and ¢ are transformed cogrediently we state:

LemMA 1. If B % Ba , there does not exist a nonsingular cogredient transforma-
tion f which will reduce B8 to a diagonal matriz and ¢ to an zdentzty matrix.

Proor. Suppose there exists an f such that

fof' =1, faf" =
where I is an identity and D a diagonal matrix. Therefore 8 = f~'Df'™; ' =
f'Df, y1eldmg B = @', which is contrary to the hypothesis.
LEMMA 2. If B1a # B , there exists a nonsingular transformation f which reduces

agtod* = , B to another nonsymmetric matriz 8* and which leaves the standard-
P
1sed “distance” & between the two alternatives invariant. .
0'_1’ 0 .
Proor. Such a transformation is given by f = 0 4 . This completes
g22]|

“ the proof.
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We may thus derive the non null distribution of U assuming ¢y = o2 = 1.
We shall presently see that the power function of U depends only on one nuisance
parameter p.

To reduce the positive definite form Z in the denominator of U to a linear
combination of two independently distributed x”’s we proceed as follows:

(i) There exists an orthogonal transformation which will simultaneously
yield sy = ZPeta/n; s» = 2723a/N; $12 = Z121a%24/M, Where 21, and 2. follow
a certain bivariate law.

(ii) The transformation

Z;ka =(1- Pz)_%(zla — p2a)
23e = %a

further reduces Z to a quadratic form in normally and independently distributed
variates.
(iii) A proper choice of 8 in the orthogonal transformation
Z1a = 212 COS 0 — 23, sin 0
Zha = Ziq SN 6 + 23, COS 6
ensures the vanishing of sample covariance of 21« and 22, and we obtain nz =
n 12 n 12
@1Z1%1e + 221224, where ¢1 and ¢, depend upon p and the elements of the
matrix c.
Finally we have U = xXia (yixa.m + v2x3.m) ", where x? is a noncentral x* and
m=n) 1+ Q= 4|c|@— p)eu+ ez — 20c0),
yo= )71 — 1 — 4]c|(l — P)leu + e — 2pc) D]

We observe that if the covariance matrix is an identity matrix, the values of
71 and v check with the values of C; and C; (Section 4.3).
Following Hsu [9] we obtain the following forms for the non null frequency
function and power function of U:
) r+}prr—4 —n—r—}
_ et in v Y2 U (1 + v2U)
g(U) = ¢ (v1/72) ;0 U Y Ty

1 -~
F<’ﬂ +r+ 3 %n)n: 1 "l“‘)’;f‘z/gl)

(4.5.1)

and

BB, py, 1) = ¢ P lya/y)" 20 20 36 TGn + BRI — yo/7)"
(4.5.2) h=0 r=0

(rGE)T + DTG + DI ay(n + by + 3)

where F denotes the hypergeometric function and ay = (1 + v.Up)™". Because
of the fixed relation v1 + 7. = 1/n either of the above two results could be
expressed in terms of v; or v; and consequently p is the only nuisance parameter
present in (4.5.1) and (4.5.2).
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To show that U provides an unbiased test for the hypothesis B = B we
state the following theorem:

TrEOREM IV. For any n and fixed p the power function 8(3, p, n) ts a monotone
increasing function of the standardised “distance’ & beween the two alternatives.

Proor. Consider the double.series

33 38 TGr + B — 1/7) TG + DIG + DI ig(n + by r 4+ 3)

re=0 h=0

which is dominated by
rgo (/v (38D / r!

This latter series has infinite radius of convergence and consequently we can
differentiate (4.5.2) term by term. Setting 36’ = A* and differentiating we
obtain after simplification

0

BEHBM _ (gt 355 T + W — /7" A"
oA =0 =0

(TG + DI 4+ 1)) g + By r + 3) = Lag(n + hyr + 3.

Since I.,(n 4+ byr + §) — Is(n + h, r + %) > 0, therefore 98(3, p, n)/dA* > 0.
This proves the theorem and establishes the unbiased character of the test
based on U.
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