FORMULAS FOR THE GROUP SEQUENTIAL
SAMPLING OF ATTRIBUTES

By HpWARD L. JonEs

Illinots Bell Telephone Company

1. Summary. When an infinite lot consisting of defective and nondefective
items is investigated by means of a group sequential sampling plan, the use of
matrices and vectors is helpful in determining the probabilities of various com-
binations of the two classes of items and in computing unbiased estimates of the
lot fraction defective. For a sequential plan of the Bartky [1] type, the infinite
summation of such vectors leads to an exact, explicit formula for the average
number of items inspected,

fip = p {LlG(ha + he — 1) — (b1 + ha)]
— Ghe — 1) + by + ke — [M]},

where p is the fraction defective in the lot, L, is the probability of arriving at a
decision to accept the lot, h; and ks, are parameters of the plan as defined by the
Statistical Research Group [3], G(z) is defined by Bartky’s equation (36), and
[h4] is the largest integer equal to or less than h; .

In approximating L, , or in finding the parameters of a sequential plan with
specified risks, the formulas proposed by Wald [2] and the Statistical Research
Group can be improved by adding an adjustment,

(1.2) a = (1 — 2s),

to the value of ks wherever it occurs. Their formula for approximating 72, can be
improved by adding the adjustment

(1.3) cg = ag/(1 — s)

wherever h, occurs, provided that the value of L, which appears in this formula
is arrived at by employing adjustment (1.2).

2. Introduction. The sampling plans considered here are among those used in
acceptance sampling where the purpose of the plan is to provide objective
criteria for deciding whether the fraction defective in a lot of infinite size is
excessive or not. Inspection of randomly selected items from the lot continues
as long as

2.1) Cons—h <d<ns4 he,

where n is the cumulative number of items inspected, d is the cumulative num-

ber of defective items found, and s, h;, and he are positive numbers that are

chosen to give the sampling plan certain desired properties and that may be

regarded as parameters defining a particular plan of this type. When (2.1) is

no longer true, inspection ceases and the indicated decision is recorded. If
72

(1.1)
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d < ns — I, the decision is favorable, and the lot is accepted as not having an
excessive number of defective items. If d > ns + A, the decision is unfavor-
able, and the lot is rejected. The optimum properties of a sampling plan of this
type, with respect to the amoun} of inspection necessary before a decision is
reached, have been discussed by Wald and Wolfowitz [6].

If 1/s, /s, ho/s, and by + ks are all positive integers, the plan is equivalent
to a group plan like that outlined in Table 1, where an initial group of size
vo 2= 0 is selected, followed if necessary by additional groups of sizev = 1/s > v, .
The sampling plan for this case has the important practical advantage that
reference to a chart or a table (like Table 1) is necessary only once for each
group inspected.

For group plans of this type, Bartky [1] derived an exact formula for the
probability of acceptance, here denoted by L, , and for the average or expected
value of the total number of groups that have been selected and wholly or
partly inspected when inspection ceases and the appropriate decision is reached.
These formulas were obtained by summing vectors, one vector for each value
of n for which ns — h, is an integer, with an element for each of the h; + hy — 1
integral values of d satisfying (2.1), and with each element equal to the joint
probability (a) that n or more items will be inspected before reaching a decision,
and (b) that exactly d defective items will be found among the first n items
inspected. By a slightly different approach, Girshick [5] derived a formula for
L, that is equivalent to Bartky’s. His results indicate that this formula holds
also when h; + hs is not an integer. For the still more general case where s is
any rational number between 0 and 1, Pélya [7] described a method of comput-
ing L, and 71, by solving difference equations, 7, being used here to denote the
average or expected number of items inspected until a decision is reached to
accept or reject the lot. His results, however, are stated in terms of polynomials
for which explicit formulas are not given except for an illustrative example.
Walker [9] obtained an exact, explicit formula for L, for the case where s is
rational, and found the mean and variance of the number of items inspected in
terms of functions not stated explicitly. Wald [2] gave formulas for approximat-
ing L, and 7, for the still more general case where s, h; , and hs are not neces-
sarily rational. As pointed out by Mrs. Robinson [8], the errors in Wald’s
approximations are sometimes of considerable size.

For plans of the type outlined in Table 1, the approach taken here is to
define a vector for every integer n > 0, including values of n where ns — b, is
not an integer as well as the values discussed by Bartky. The method of com-
puting these vectors is described in Section 3 following. As indicated in Section
4, such vectors are useful in arriving at unbiased estimates of the lot fraction
defective by the general method suggested by Girshick, Mosteller, and Savage
[4]. They also simplify the summing of probabilities (or its description, at any
rate), and facilitate the use of some results already obtained by Bartky. These
results are briefly reviewed in Sections 5 and 6, and are used in Section 7 to
derive an exact, explicit formula for 7, . An approach similar to this can obvi-
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ously be followed in connection with double sampling, truncated sequential
sampling, and other plans for sampling attributes. Matrices with more than
two dimensions may be employed where there are more than two attributes.
Bartky suggested methods of approximating L, and the average number of
groups selected. These methods can,also be extended to the approximation of 7, .
Such approximations are frequently much closer to the exact values than the
approximations proposed by Wald. By adding certain adjustments to the
parameter he in Wald’s formulas, however, it is possible to obtain fairly simple
approximations that are not greatly different from those resulting from the
application of Bartky’s suggestions. These various approximations are discussed
in Section 8, and comparisons between them and the exact values for illustrative
examples are shown in the accompanying tables. The nature of the errors in

TABLE 1
A group sequential plan of the Bartky type

Total number

of groups Upon finding d defective items (d = 0, 1, ++<)—

selected Tgtal

... . Addj- [items selegted . . .
Initial ;0001 accept if d is equal continue insyf‘;ection if d is equal to one reject if d is equal
8TOUP oroups to or less than— of the numbers— toor greater than—

1 0 v vs — hy S — hy + 1, -, 08+ hy — 1 28 + he

1 1 | w4y |vs—hi+1| vs—h 422,08+ hy VoS 4 hy + 1

1 2 1}0+20 1}08-h1+2 0087h1+3,"',008+h2+1 l}os+hz+2

1 3 vo+30 | s —h +3| s —h+4,---,08F by +2 vs + hy + 3

Norte: 1/s, hi/s, hs/8, and hy + ke are positive integers; by + he > 2; v = 1/s > 2;0 <
v = (hh — [M])/s < v, where [k;] is the largest integer < &, .

Wald’s approximations is outlined in Section 9, and suggestions are offered for
improving his procedure for choosing the value of s, when designing a sequential
sampling plan.

The notation used here largely follows that introduced by the Statistical
Research Group, Columbia University [3], where applicable. Elsewhere, Bartky’s
symbols have been used extensively. In making close comparisons with his
article [1], however, it should be noted that the definitions of some of his sym-
bols have been changed slightly in order to simplify the summarization of his
results. Some of this simplification is made possible by restricting our discussion
to sampling plans where & > 0, whereas Bartky also considered plans where
h Z0.

3. The probability that inspection will continue. Let n, s, h; , and h; have the
same meaning as in inequality (2.1); and let d; be the smallest integer greater
thanns — hy. For¢ = 2,3, --- , k, let

(341) di=d+1i-1,
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where k is the smallest integer equal to or greater than &; + ks . A vector P(n)
can now be defined for every integer n > 0 by letting P;(n) denote the prob-
ability that inspection will continue on account of finding exactly d; defective
items among the first n items inspected. In other words, let P;(n) represent the
joint probability (a) that n or more items will be inspected before arriving at a
decision to accept or reject the lot, and (b) that exactly d; defective items will
be found among the first » items inspected, with the special condition imposed
that

(3.2) Pin) = 0ifd; > ns + hs.

If we let p equal the fraction defective in the lot, and ¢ equal 1 — p, we can
now write

(3.3) P(n + 1) = J@)P(n), n=0,1,2 -,
where P(0) is the vector with elements

1 if ¢ is the smallest integer > h, ,
0 otherwise,

34 Py(0) = {

fori = 1,2, .-+, k, and where J(n) is one of several k¥ X k matrices with ele-
ments equal to p, ¢, or 0. In particular, if 0 < s < 1, then

A if m4+1s—mh<d, and d < (n+ 1)s + hy,
(35) Jn) =<B if (n+4+ 1)s —h > di,
C if (n+1)s—h1<d1, and dk>(n+1)s+h2,

where the matrices 4, B, and C have the respective elements

g if j=i
(3.6) A,‘j =D if ] =1 — 1,
0 otherwise,
r if j=i<k,
3.7 B;j=<4q if j=i+1,
0  otherwise,

(¢ if j=i<k,
(3.8) Ci; =1p if” j=t—-1<k—1,
0 otherwise.

Examples of several successive vectors for an illustrative example are shown in
Table 2. (If 3 < s < 1, the same approach may be followed after substituting
1 — sfor s and interchanging A, and h. , and p and ¢, with corresponding changes
in the interpretation of the results.)

For a group sampling plan of the type indicated in Table 1, where an initial
group is selected of size v, such that 0 < v, < 1/s, followed by one or more
additional groups, if necessary, of size ¥ = 1/s, let ¢ represent the number of
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groups of size » that have been completely inspected When the nth item is in-
spected. Also, for n > v, let

(3.9) t=mn— (v+ ), c=0,1,2---,

so that wherever defined, ¢ has one of the values 0,1, ---,v» — 1, representing
the number of items inspected in the (¢ + 1)th group of size ». Then it can be

TABLE 2

Some values of P(n) for the tllustrative case where s = .3, hy = 7, hy = 1.6
n ns —h dy ds ds ns + he Py(n) Py(n)  Py(n)
0 -.7 0 1 2 1.5 1 0 0
1 —.4 0 1 2 1.8 q P 0
2 -1 0 1 2 2.1 ¢ 2pq P
3 .2 1 2 3 2.4 3pq* 3p%q 0
4 .5 1 2 3 2.7 3pqg® 6p%g? 0

Nore: P(1) = CP(0); P(2) = APQ1); P(3) = BP(2); P(4) = CP(@3).

verified that
{A‘M‘P(O) if v =0,
(3.10) P(n) = {A"P(0) if 0<n<wn=>1l,
A'M°BA™'P0) if n>wu>1,

where the superscripts indicate repeated multiplication,
(3.11) M = BA™,

and A" = M° = I, the identity matrix. Let C% be defined for any integer @ and
any nonnegative integer b by the relationship

_fo/ald—a)] if 0<La<gh
(3.12) et = {0

otherwise,
where 0! = I'(1) = 1. Then M has the elements
ceo= C%—H-lp‘_ﬁ-lqv—“-j—l if t=12---, k — 1,
©13) My = {0 it ik

being equivalent to M;; in Bartky’s [1] equation (7) except for an additional
row and column. ,

4. Estimating the fraction defective. Suppose a decision to accept or reject a
particular lot has been reached after inspecting n, items and finding d, defective
items, and that it is desired to obtain an unbiased estimate, p, of the fraction
defective. Following the method of Girshick, Mosteller, and Savage [4], we may

.write

(4.1) b = K*(ny, dp)/K(ny , dy),
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where K(n,, d,) is the number of ways of selecting d, defective items and
n, — d, nondefective items without arriving at a decision to accept or reject
the lot before inspecting the n,th item, and K*(n,, d,) is the number of such
ways when the first item selected is defective. But since a decision has finally
been reached after finding d, defective items among the 7, items inspected,
there must have been d, defective items among the first n, items inspected,
where n, = n, — 1, and d, = d, or d, — 1 according to whether the lot has
been accepted or rejected. Conversely, after finding d, defective items among
the first n, items inspected, there was just one way of finding d, defective items
among the n, items inspected, It follows that

(4.2) P = K*(n,, d;)/K(n,, d,).

Let P.(n,) denote the probability of finding exactly d, defective items among
the first n, items inspected; and let Py (n,) denote the conditional probability of
finding exactly d, defective items among the first n, items when the first item
inspected is defective. Also, let d; be the smallest integer greater than n,s — b, ,
and . be the integer determined by substituting r for ¢ and d, for d; in (3.1).
Then P,(n,) is the rth element in the vector P(n,) as defined in Section 3. Sim-
ilarly, P (n,) is the rth element in the vector P*(n,) defined by the equations

(4.3) PX(1) = J*0)P(0),
(4.4) P¥(n + 1) = J(n)P*(n),

where J*(0) is the matrix obtained by substituting 1 for p and 0 for ¢ in J(0)
as defined in that section. Moreover,

(4.5) P.(n,) = K(n,, d)p"¢" ™,
and

(4.6) P}(n) = K*(n, , d)p™'g" .
Hence,

(4.7) p = pPr(n,)/P.(n,),

where the right-hand side of this equation is determined for any arbitrary value
of psuchthat 0 < p < 1.

For a sampling plan like that shown in Table 1, a convenient way of com-
puting P¥(n,) and P,(n,) is by first finding the operator O(n,) that is equivalent
to the product of the matrices shown on the right-hand side of (3.10) for n = n,,
and then employing the relationships

(4.8) P(n,) = O(n,)P(0),
(4.9) P*(n,) = O(n,)P*(0).

. The use of (4.9), however, will necessitate finding elements of a vector P*(0)
satisfying equations (4.3) and (4.4) simultaneously for n = 0. It can be verified
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that these two equations are satisfied if P*(0) has the following set of elements
(not unique unless J(0) = 4):
if i < u,

* 0 <
(4.10) P;(0) = {<_1)i-u-t1pi—u—1q-i+u i i>
where u is the smallest integer greater than h; — s.

An alternative method of computing % is to find vectors K(n,) and K*(n,) by
substituting 1 for every p and ¢ in the vectors P(0) and P*(0) and in each
matrix J(n), and then performing the operations analogous to those indicated
in (3.10), (4.8), and (4.9). The rth elements in these vectors are equal to K(n, , d,)
and K*(n, , d,), respectively; whence

(4.11) p = K7 (n,)/K.(ny).
6. The probability of acceptance. For v an integer, let
(5.1) g(z) = Z (_l)d C‘(ii—d)vH—lpdq'-('i—d)v—d
a<i
ford = 0,1, -+, where C{" "™ is defined by (3.12). Also, for a sampling

plan of the type shown in Table 1, let the vector V be defined by

(5.2) V=ZP(00+CU), =012 .-

c=0

that is, let V be the infinite sum of those vectors in equation (3.10) for which
t = 0. Then from Bartky’s results [1], the elements of ¥V are

{y(i)g(hz)/g(hx + he) i i<h,
9@g(ha)/g(hy + he) — g6 — ) i > M,

fori =1,2, ---, k, where k = h; + h; ; and the probability of accepting the
lot is

(5.3) V=

¢V if  w =0,
¢"Pi(0) + ¢'Vi i w > 0.

In evaluating g(¢) for small 7, it is convenient to use

(64) L, = g(h)/g(hs + o) = {

(5.5) 9() = g " Avina
in conjunction with Girshick’s [5] difference equation
(5.6) Ap = Apot — p¢" Ay, m > v,

with the initial conditions
5.7 An =1 fm=0,1,---,v— 1.

‘6. The average number of items selected. For the sampling plan indicated
in Table 1, suppose the items are selected in groups of size v after the initial
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group of size vy , the rth group being selected after the (r — 1)th group has been
completely inspected. The total number of items selected, when a decision has
been reached to accept or reject the lot, is therefore either vy, or the sum of v,
and some multiple of v. Let this number be denoted by the product vr, , so that
7, 18 the sum of a nonnegative integer and the fraction vy/v, where 0 < vy/v < 1.
From Bartky’s [1] equation (14), the average or expected value of r, is given by

k
(6.1) Fp = n/v + Z‘i Vi, k=l + he,

where V; is defined by (5.3). Also, if we let
(6-2) G(’&) = Zg(i_d)i d= 0) 1) Ty
a<gi

where g(i — d) is defined by (5.1), then
k
(6.3) 2 Vi= LG + ha = 1) = Gl — 1),

where L, is the probability of acceptance, as in equation (5.4). Since 1/s and
h1/s are integers for the type of plan considered here,

(6.4) v/v = by — [M],
where [}] is the largest integer < h; . It follows that
(6.5) fp = LyG(h + by — 1) — G(he — 1) + b — [Ri],

and that the average number of items selected is v7, .

7. The average amount of inspection. If inspection ceases immediately when
inequality (2.1) is no longer true, the average or expected number of items
inspected for the sampling plan indicated in Table 1 may be derived as outlined
in the following paragraphs.

Let S; denote the 7th element in the infinite sum of vectors

(7.1) S=3 P).

nw=(

Employing (3.10) and (5.2), we write
72) 8 = 12"_:_: A™P(0) + 'g AV = (I — AT — A™)P©) + (I — A)V].

The elements of (I — A")P(0) are 0 if v, = 0; otherwise they are (1 — ¢°°)P;(0)
for ¢ = 1, and P;(0) — Pi4(v) for¢ = 2, 3, -- -, k. Similarly, the elements of
(I— A")Yare (1 — ¢")Vifors = 1,and V; — Vi + Pia(o) for¢ = 2,3,
-+« k. The elements of (I — A)™ are equivalent to p~ for j < 1, and 0 for
‘7 > 1. The elements of S are therefore
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L

P_l{(l - qv)Vl + g Vi = Via+ Pj—l(O)]} if o=

73) 8= p"l{l — @IPO) + (1 — @IV

4

+ 2= Vet PO i >0

where the summation is taken to be 0 for z = 1. This equation may be reduced to
g p (Vi — L) if 1< h,
' V=L, +1) i i>h.

To find the average amount of inspection, we can now employ

(7.4)

k
(7.5) iy = 2, Si,
]

the derivation of which is similar to that used by Bartky [1] to obtain his equa-
tion (14). It follows that

iy = p_l{fp + ke — (hl + h2)Lp}
D HL[G(hs + by — 1) - (b + ha)] — G(he — 1) + hy + he — [h]},

where 7, and G(z) are defined by equations (6.5) and (6.2).

8. Approximation formulas. Several formulas have been proposed for approxi-
mating the probability of acceptance and the average amount of inspection for
sequential sampling plans. Such formulas are convenient not only for the type
of plan shown in Table 1 where s, &, , and A, are rational numbers, but particu-
larly for plans where any or all of these parameters may not be rational and
approximation by step-by-step evaluation of terms like those in the last three
columns of Table 2 would be long and tedious. They are also useful in designing
plans that are to have certain specified properties, as outlined in Section 9.

The following formulas were proposed by Bartky [1]:

(7.6)

61 o) ~ {(2m' + 20/3 — 4/3)(v — 1) if op=1,
1—vp) + g — @— Dpa] 'z if wup 1,
wi* + 5v5/3 + v/18 — 44/3

52 66~ — 1/18 —-_lv 9)w — 1) 12 . if op=1,
(1 —vp)”™ — $o(v — Dp°(1 — vp)
+[g— (@ — Dp2] (1 — z) 72 if op <1,

where v = 1/s and z is the real positive root of

(8.3) (pr+ " =2z
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that is unequal to 1. In practical problems, we may first compute p for selected
real positive values of the dummy variable z by employing

(84) p=("—1De-17,
which is equivalent to (8.3), and then find the corresponding values of L, , the
probability of acceptance, and 7, , the average amount of inspection, from equa-

TABLE 3

Computation of Ly, the probability of acceptance, to three decimal places
for illustrative examples

T 10 5 2 1 5 2 1
Example 1:
s=.04,h1=h2=1
Exact.................... .963 .911 .759 .577 .380 .182 .096
Formula (8.1)............. .954 .899 .746 .566 .373 .180 .095
Formula (85)............. .966 .915 .765 .582 .383 .183 .097
Formula (8.6)*............ .909 .833 .667 .500 .333 .167 .091
Formula (8.8)........... ..| .955 .900 .747 .566 .373 .180 .096
Example 2:
s=.04,mh=2h =1
Exact.......cooeveinenn.. .959 .893 .674 .403 .169 .036 .010
Formula (8,1)............. .950 .881 .662 .395 .166 .035 .009
Formula (8.5)............. .962 .898 .681 .408 .170 .036 .010
Formula (86)*............ .901 .806 .571 .333 .143 .032 .009
Formula (88)............. .951 .882 .663 .395 .166 .035 .010
Example 3:
s=.04,h=1hh =2
Exact.................... .996 .981 .888 .698 .444 .196 .100
Formula (8.1)............. .995 .980 .887 .698 .444 .196 .100
Formula (85)............. .996 .981 .891 .701 .445 .196 .100
Formula (8.6)*............ 991 .968 .857 .667 .429 .194 .099
Formula (88)............. .996 .980 .888 .698 .444 .196 .100

* Values shown for Formula (8.6) are taken from [3].

tions (5.4) and (7.6) in conjunction with (8.1) and (8.2). Comparison of the
results with exact values for illustrative examples are shown in Tables 3 and 4
on the lines headed ‘Formula (8.1)”’ and “Formula (8.2)”. In this connection,
it should be observed that Bartky recommended these approximations only for
- cases corresponding to those where h, > 3. The examples illustrated here were
deliberately chosen to show comparisons under more adverse conditions.
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If v is large and p small, so that the probability of finding exactly d defective
items in a group of size » approximates the corresponding term in the Poisson

,TABLE 4

Computation of 7, the average amount of inspection, to one decimal place
for dllustrative examples

z 10 5 2 1 5 2 i
Example 1:
S=.04,h1=h2=1
Exact.................... 31.2 33.9 36.6 36.2 32.7 25.9 21.2
Formula (8.2)............. 30.6 33.0 35.3 34.6 31.1 24.3 19.6
Formula (8.5)............. 29.5 32.4 35.6 35.4 32.3 25.7 21.0
Formula (8.7)............. 27.9 28.5 28.0 26.0 22.7 17.6 14.2
Formula (8.9)............. 30.6 32.9 34.9 34.2 30.1 23.2 18.5
Example 2:
§=.04,h =2,hs =1
Exact.................... 63.6 70.4 77.0 71.2 54.7 34.1 24.6
Formula (82)............. 62.8 69.0 74.9 68.9 52.7 32.4 24.0
Formula (8.5)............. 60.0 67.2 74.7 69.7 54.0 33.7 24.4
Formula (8.7)............. 58.2 60.7 60.1 52.1 38.9 23.8 16.8
Formula (8.9)............. 62.8 68.9 74.3 68.2 51.4 31.1 21.8
Example 3:
s= 04, h =1, h =2
Exact.................... 33.7 40.1 53.1 60.6 58.0 44.7 35.4
Formula (82)............. 33.6 40.0 53.0 60.5 57.8 44.5 35.0
Formula (8.5)............. 31.6 38.1 51.1 58.9 56.7 43.9 34.7
Formula (8.7)............. 32.2 38.6 48.1 52.1 48.6 37.4 29.5
Formula (89)............. 33.6 40.0 52.8 60.2 57.0 43.5 33.9

series, then g(z) is approximately equal to its limiting value as p — 0 and v — o,
and we may write

(85) g(z) NE'. (dl)—l [(d _ i)vp]de(i-d)vp’ d=01,---,

where 0! = I'(1) = 1. The limiting value of G(z) can be found by combining
(8.5) with (6.2). These limiting values of g(z) and G(z), for7 = 1,2, --- , 5 and
for selected values of z as defined above, are given in Bartky’s Table II. The
resulting approximations to L, and 7, for illustrative examples are shown in
our Tables 3 and 4 on the line headed “Formula (8.5)".
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Wald’s [2] formulas for approximating L, and 7, have been transformed by
the Statistical Research Group [3] into the following:

ha/ (hy + ho) if p=s,
8.6 Lp ~ .
®.0) {xh‘“" — 2M)/@M"™ - 1) if p#s,
87 o~ {hlh‘l/ [s(1 — 9)] if p=s
[Ly(ha + ho) — ha]/(s — p) it p#s

where z has the same meaning as in (8.3) and (8.4) above. The results obtained
by applying these formulas to the examples shown in Tables 3 and 4 are indi-
cated on the lines headed “Formula (8.6)” and “Formula (8.7)”’. These results
are evidently less satisfactory than those obtained from Bartky’s formulas,
particularly for small values of hs . For other comparisons, see Mrs. Robinson’s
note [8].

For reasons outlined in Section 9 following, Wald’s formulas can be improved
by adding appropriate adjustments to the parameter hs, so that the approxi-
mations are computed from the following relationships:

(he + a)/ (b1 + he + a) ' if p=s,
®8) L,~ {(xhl-l—hz-l'a — M)/t ) it p s,
(89) i, ~ {;(}zf_l_b)h/[s(l ~ ) beee

p(1 2+ ¢q) — (hs + cg)l/(s — p) if p#s,

where
(8.10) a= 11— 2s),
(8.11) = ol + s(lu + ha + @),
(8.12) ¢c=a/(1—s).

For the illustrative examples shown in Tables 3 and 4, the application of these
formulas leads to the approximate values shown on the lines headed “Formula
(8.8)” and “Formula (8.9)”’. The derivation of these semiempirical formulas is
discussed in Section 9.

Where sample items are selected as outlined in Section 6, the average number
of items selected can be approximated by combining the foregoing approxima-
tions with the equation

(8.13) 7o = (h + ho)Lyp — ha + ity ,

obtained from (7.6), and then dividing by s.

9. Some comments on Wald’s approximations. Wald’s [2] formulas for sequen-
tial sampling were developed to provide an objective criterion for deciding which
of two alternative hypotheses, H; and H,, concerning the population sampled
is the correct one. In general, a sample statistic, X, , is observed or computed
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forn.= 1, 2, - .-, successively, where n is the cumulative number of observa-
tions. Let f1(X,) and f:(X.) denote the relative probabilities that X, will be
found in n sample observations when H; and H,, respectively, are true. Also,
let o denote the risk we are willing to run of making the wrong decision when
H, is true, and B the corresponding risk when H, is true. Then for a Wald se-
quential plan, sampling continues as long as the likelihood ratio satisfies the
inequality

B f2(Xn) 1 - B
l—a<f1(Xn)< a

When inequality (9.1) no longer holds, however, sampling ceases and we con-
clude that H, is true if the second member of (9.1) is equal to or less than the
first member, or that H, is true if the second member is equal to or greater
than the third member. Wald’s choice of this type of plan was based on his
conjecture, later proved [6], that it would minimize the average number of
observations for the given risks when either H; or H, is true.

If the population consists of an infinite lot of items that can each be classified
as defective or nondefective, if the alternative hypotheses state that the lot
fraction defective p = p; and p. , respectively, and if X, = d (the cumulative
number of defective items in the first #» sample items observed), then inequality
(9.1) becomes

9.1)

1—a " pigie a

(9.2)

This is equivalent to inequality (2.1), where
log [¢1/¢0)

(9.3) ~ Tog (290 /(Pr )]’
_ log[(1 — a)/g]

(9.4) ' Tog [(p200)/(prg)]’

and

03 _ log[(1 — B)/d]

" log [(p2q1)/ (1))’

“log” denoting logarithm to any convenient base. Formulas (9.3), (9.4), and
(9.5), or their equivalents, were therefore proposed by Wald and by the Statis-
tical Research Group [3] for use in designing a sampling plan with parameters
s, h1 and h; such that the operating characteristic curve representing the func:
tional relationship between p, the fraction defective, and L, , the probability of
deciding that H; is true, will pass through the specified points (p1, 1 — «) and
(p2 , B). In practice, for p; < p., a decision that H, is true means that the lot
being sampled is accepted as satisfactory, while a decision that H, is true means
that the lot is rejected.
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In a situation where the specified points, (p1, 1 — «) and (pz, 8), and the
values of s, hy, and he computed from formulas (9.3), (9.4), and (9.5) 'are such
that the first two members of (2.1) are exactly equal whenever a decision is
reached to accept the lot, and the second and third members are exactly equal
whenever a decision is reached to reject the lot, the operating characteristic
curve will actually pass through the specified points. Moreover, if we set

(9.6) (P:01)/ (prg2) = 1/,

the elimination of p; and ¢; from (9.3) and (9.6), together, will yield an equation
in p. equivalent to (8.4); while the elimination of p; , ¢1 , and « from (9.4), (9.5),
and (9.6) will yield a value of 8 equal to the right-hand side of (8.6). In other
words, for the situation just described, equations (9.3) to (9.6) can be used to
derive the exact formula for the operating characteristic curve in terms of z. As
Pélya [7] pointed out, the necessary and sufficient conditions for this situation
are that s = } and that both 2k; and 2h, be positive integers.

In other situations, when a decision to accept the lot is reached, the first and
second members of (2.1) will be equal if 1/s and k;/s are integers, and in no case
will the first member exceed the second member by as much as s. But when de-
cisions to reject are reached, the second and third members can not always be
equal if s < %, and the difference may be almost as large as 1 — s. It follows that
when s is small, most of the difficulty with Wald’s procedure for choosing the
parameters of the sampling plan lies in the formula for computing h; . This
difficulty can be largely surmounted by subtracting an adjustment, a, from the
right-hand side of (9.5). This implies a similar adjustment of (8.6) by adding the
correction a to each value of h, , as shown in (8.8). The value of a here proposed
is that shown in (8.10), which was chosen so that, for p = s, (8.8) would agree
with the approximations to L, resulting from the combination of (5.4) and (8.1).
The suggested formula for h., therefore, is

IOg [(1 - B)/a] 1(1 — 28).

9.7 *7 log (290 /()] °

3

Comparison between actual and specified risks for illustrative sampling plans
resulting from the use of formulas (9.5) and (9.7), in conjunction with (9.3) and
(9.4), is shown in Table 5.

To investigate formula (8.7), consider a situation where the points (p;,
1 — «) and (p2, B) and the resulting values of s, k1, and ke lead to a sampling
plan such that a decision to accept or to reject the lot can be reached only when
the last item in some group has been inspected. In that case, the relationship
between n, , the number of items inspected when a decision is reached, and r, ,
the equivalent number of groups of size 1/s selected, is necessarily r, = sn, .
Taking expected values and combining with (7.6) to eliminate 7, leads to (8.7),
which is therefore exact for the situation just described. This situation, as Pélya
noted, is precisely the same as the one where (8.6) is exact; that is, the necessary
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and sufficient conditions for (8.7) to be exact are that s = % and that both 2h,
and 2h, be integers.

In other situations where 1/s and h;/s are integers, the relationship r, =
sn, will hold if the sampling inspection leads to a decision to accept the lot.
But for s < %, a decision to reject the lot may be reached before the r,th group is

TABLE 5

Comparison between actual and specified risks, for different methods of computing
hs leading to the same sampling plan, where p, = .010720 and p, = .097766

Example 1 Example 2 Example 3
Specified risks:
Formula (9.5) :
a .090909 .099099 .009009
B .090909 .009009 .099099
Formula (9.7) '
a .044638 .048886 .004444
B .095577 .009511 .099556
Parameters of result- '
ing plan:
s .04 .04 .04
hy 1.00 2.00 1.00
he 1.00 1.00 2.00
Actual risks:
a .037 .041 .0044
B .096 .0096 .0996

completely inspected. In other words, for all plans of the type shown in Table 1,
the relationship between r, and n, for every decision is

9.8) rp— 1< sn, <1p.

This means that

(9.9) fip = [Lp(h1 + h2) — ha — fo]/(s — p),
where f, is some function of p that satisfies the conditions
(9.10) 0<f<1

for all values of p, and f, —0as p — 0 or 1. The formula
(9.11) fo ~cq(l — Ly),

where ¢ is defined by (8.12), results in approximations to 77, that satisfy these
conditions, and that are about the same as the approximations resulting from
the combination of (7.6) and (8.2) for values of p in the neighborhood of s. Re-
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writing (9.9) and (9.11) as indicated in (8.9) shows that most of the difficulty in
formula (8.7) is associated with the parameter .

Formulas (8.8) and (8.9) are equivalent to Wald’s formulas when s = %, and
are therefore exact for this value‘of s when 2h; and 2h, are integers. Again like
Wald’s formulas, the approximations to L, and 7, approach the exact values
as p — 0 or 1. Investigation of these formulas and their first derivatives forp = s
indicates increasingly close agreement with the approximations computed from
(8.1) and (8.2) as h; increases in size.
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