THE FORMATIVE YEARS OF ABRAHAM WALD AND HIS WORK
IN GEOMETRY

By KarL MENGER
Illinots Institute of Technology

In the fall of 1927, a man of 25 called at the Mathematical Institute of the
University of Vienna. Since he expressed a predilection for geometry he was
referred to me. He introduced himself as Abraham Wald. In fluent German,
but with an unmistakable Hungarian accent, Wald explained that he had car-
ried on most of his studies at the elementary and secondary school levels at
home, mainly under the direction of his older brother Martin, a capable elec-
trical engineer in Cluj (Kolozsvér, Klausenburg). He had just arrived in Vienna
in order to study mathematics at the university. Geometry had interested him
ever since he was fourteen. More recently he had been reading Hilbert’s “Grund-
lagen der Geometrie” (Foundations of Geometry) and he saw possibilities for
improving these foundations by omitting some postulates and weakening others.
I suggested to Wald that he write up his results {5}* (one of his proofs was later
incorporated into the seventh edition of Hilbert’s book) and at the same time
recommended some additiondl reading,.

Wald enrolled in the university, but during the next two years Vienna did
not see much of him. The system of complete freedom which at that time pre-
vailed in the universities of Central Europe—a detrimental system for weak
students—kept the gifted ones from wasting semesters on courses the content
of which they could absorb in a few weeks of concentrated reading. Moreover,
Wald had to serve in the Rumanian army.

It was not until February 1930 that he and I again had extended conversa-
tions. Then he came unexpectedly to hand me a manuscript which purported
to contain the solution of a famous problem. It was a serious piece of work,
but an error at the very end invalidated the result. Wald was visibly disap-
pointed. But a few days later he returned to tell me that, during the last week,
he had been sitting in on my lectures on metric geometry—the first university
lectures he ever attended—and that he planned to follow this entire course.
Moreover, he wanted to try his hand at some problem in this field. I had just
introduced the ‘“between’ relation in metric spaces: The point ¢ is between
the points p and r if, and only if, p = ¢ = r and the three distances between
the points satisfy the equality

d(p, q) + d(g, ) = d(p, ).

I asked Wald whether he would like to try to characterize this “‘betweenness”
among the ternary relations in a metric space. Four weeks later he brought me

‘1 References are listed in “The publications of Abraham Wald,” pp. 29-33 of this issue.
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the first draft of the solution which he subsequently published in the Mathe-
matische Annalen {1}, {2}, {3}, {7}. At the same time he asked for another
problem.

It seemed to me that Wald had exactly the spirit which prevailed among the
young mathematicians who gathered together about every other week in what
we called our Mathematical Colloquium; so I at once invited him to present
his result there. Godel and Nobeling, Alt and Beer were among the regular
participants in this Colloquium; Miss Taussky came whenever she was in
Vienna; Cech, Knaster, and Tarski were frequent guests; and numerous stu-
dents and visitors came from abroad, especially from the United States and
Japan. It was in this stimulating atmosphere that Wald spent his formative
years. In these colloquia he became familiar with important problems, and pre-
sented the remarkable solutions which he published in the Ergebnisse eines
Mathematischen Kolloquiums.

Wald’s second course at the university was on dimension theory. I had sug-
gested that topology might be developed in spaces other than point sets. Instead
of “points,” “pieces” might be the undefined basic concept. Certain nested
sequences of pieces might be called points. Wald succeeded in characterizing
the nested sequences which should be so named {4}.

After this excursion into topology, Wald returned to metric geometry. In
1928, I had characterized the metric spaces congruent to subsets of the n-di-
mensional euclidean space or of the Hilbert space. Wald solved the correspond-
ing problem for the n-dimensional complex space (in which each point is given
by n complex coordinates) as well as for all indefinite spaces where the coordinates
of the points are real, but the square of the distance between two points is given
by an indefinite quadratic form rather than by the definite sum of squares which
goes back to the law of Pythagoras {14}. An unpublished manuscript, “On ab-
stract fields and metrics,” has been found. The paper is a continuation of the note
of Miss Taussky in Issue 6 (pp. 20-23) of the Ergebnisse.

These studies aroused in Wald an interest in determinants {8} and led him
to the following discovery. Let S be a four-dimensional simplex. It has 10 sides
and 10 triangular faces. Geometers had known for a long time that the volume
of S is determined by the lengths of its 10 sides. Is this volume also determined
by the areas of the 10 faces? Wald constructed two simplexes with equal faces
but different volumes {9}.

At that time Wald also became interested in Steinitz’s theorem on the sums
of series of vectors—a generalization of Riemann’s famous result that any not
absolutely converging series of real numbers can, by a permutation of its terms,
be made to converge toward any number. Steinitz’s theorem states that the
vectors of an 7n-dimensional space, toward which a series of vectors can (by a
permutation of the terms) be made to converge, form a linear manifold. Wald
gave a new proof of the theorem and extended it to spaces of infinitely many
“dimensions. Moreover he studied series of group elements {11}, {12}, {13}.

In order to enhance the analogy between the postulates for Lebesgue measure
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and the postulates I had formulated for dimension, Wald developed a charac-
terization of L-measure among set functions in which he confined the additivity
postulates to closed sets {17}. Let u(S) be a set function which (as, e.g., Lebes-
gue’s exterior measure) is defined for every subset of the euclidean n-space and
satisfies the following conditions: ({) p(S) > 0 for every S; (2) &’ C S implies
w(8) < u(8); (B) u(Ch) + u(Csy) = u(C1 + Cy) for any two disjoint closed sets;
(4) p(Qo20 C) < D% u(Cy) for every sequence of closed sets; (5) u(I) = 1 for
any unit n-cube I. Then, for every L-measurable set, u(S) is equal to the L-
measure of S.

In later years, he and I often joked about the fact that he took only one more
course at the university before getting his Ph.D. This third course dealt with
the new development of projective and affine geometry based on the operations
of joining and intersecting which Garrett Birkhoff several years later called
lattice operations. As a result of his studies in this field, Wald took active part
{6} in the discussions of this subject which G. Bergmann, Alt, Schreiber, and
myself carried on in the colloquium.

Another favorite topic of discussion there was the idea of curvature. On this
subject Wald did his masterpiece in the field of pure mathematics. By virtue of
the triangle inequality

d(p, g) + d(g, ) = d(p, 1),

three points p, ¢, r of a metric space are always congruent to three points of
the euclidean plane. Consider the circum-circle of these latter points and call
the reciprocal of its radius the curvature of the points p, g, r. This curvature is
zero if and only if one of the three points is between the other two. Now let A
be an arc contained in a metric space. Its points need not be given by coordi-
nates, and its shape is not necessarily described by equations or functions. All
that is assumed is an ordered continuum with a distance defined for every pair
of points. For this general situation, I defined the curvature of A at the point
a as the number (if it exists) from which the curvature of any three points dif-
fers arbitrarily little, provided all three points are sufficiently close to a. Nu-
merous theorems were proved about this general curvature of curves, and about
modifications of this concept due to Alt and Godel. But the main problem was,
of course, the extension of the idea to higher-dimensional manifolds.

From the outset it had been clear that, on a surface, quadruples of points
should be considered. But what number should be associated with a given
quadruple of points of a metric space? Four congruent points in the euclidean
space do not necessarily exist; and even if they do exist, the radius of their
circum-sphere is of no particular significance. Wald considered spheres metrized
by the lengths of the arcs of great circles. For positive %, let S; denote the sphere
of curvature k£ thus metrized; S, is the euclidean plane; for negative %, let S; be
the hyperbolic plane of curvature k. If four points of a metric space are given,
what S; contains four congruent points? The difficulty of the problem is illus-
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trated by the fact that for some quadruples of points no such S; exists, whereas
for some other quadruples there is more than one such S; .

Wald overcame these and other difficulties. He proved {18}, {19}, {22} that
if 8 is a surface of the type studied in classical differential geometry, then for
each point a there exists a number x(a) with the following property: in S, for
every quadruple of points each of which is sufficiently close to @, there exists a
congruent quadruple in an S of which the curvature & differs arbitrarily little
from «(a). Moreover, he proved that x(a) is equal to the famous Gauss curvature
of S at the point a. Thus he obtained a new and very natural way of introducing
Gauss’s curvature. Even if he had stopped at this point, his result would have
been a remarkable achievement.

But here was the beginning of Wald’s really great work. In the second part
of his paper {22} he dropped the assumption that a surface of the type studied
in classical differential geometry be given. He dispensed with the characteriza-
tion of points by coordinates and of surfaces by equations or functions or para-
metrizations. Continuing the idea which I had used in the simpler case of arcs,
he merely assumed a compact metric space S with the following properties:
(1) S is what I had called convex; that is, for any two points p and ¢ of S, there
exists a point between p and r; (2) S, at every point a, has a curvature x(a) (the
symbol used in Wald’s sense, for Gauss’s definition of curvature is obviously
inapplicable in this general situation). The second property means that for any
four points of S which are sufficiently close to a, there exist four congruent
points on a sphere S; where k differs arbitrarily little from «(a). From this
simple assumption Wald deduced (1) that S is a surface; (2) that in this surface
polar coordinates can be locally introduced; (8) that in terms of these coordi-
nates the length is expressed as it is on the classical surface of differential geom-
etry; (4) that, for each point a of S, the number x(a) is equal to the Gauss cur-
vature at @ of the classical surface created on S by the introduction of the polar
coordinates.

I venture to predict that the theorem just stated will become a cornerstone
in the geometry of the future. This development may not please the devotees of
classical differential geometry, for the theorem reveals serious redundancies in
their assumptions. The essential features traditionally postulated (that is, coor-
dinates which characterize points, parametric representations of surfaces, and
of course, the differentiability of functions) can be derived. In fact, they can be
derived from the one simple assumption of a convex compact metric space
which at every point admits a Wald curvature. This result should make geom-
eters realize that (contrary to the traditional view) the fundamental notion of
curvature does not depend on coordinates, equations, parametrizations, or dif-
ferentiability assumptions. The essence of curvature lies in the general notion
of a convex metric space and of a quadruple of points in such a space. Some day
these simple notions will be recognized as an adequate foundation for those
local geometric properties the study of which for the last 250 years has been
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monopolized by differential geometers with their complicated conceptual ma-
chinery.

At this point I must interrupt the story of Wald’s work and insert a few re-
marks about his life. He received his Ph.D. in 1931. At that time of economic
and incipient political unrest, it was out of the question to secure for him a
position at the University of Vienna, although such a connection would cer-
tainly have been as profitable for that institution as for himself. Outside of the
Colloquium, my friend Hahn was the only mathematician who knew Wald
personally. No one else showed the slightest interest in his work.. However,
Wald, with his characteristic modesty, told me that he would be perfectly satis-
fied with any small private position which would enable him to continue his
work in our Mathematical Colloquium. I remembered that my friend Karl
Schlesinger, a well-to-do banker and economist, wished to broaden his knowledge
of higher mathematics; so I recommended Wald to him.

Out of the association between these two men grew Wald’s interest in the
equations of economic production. I asked Schlesinger to present his formulation
of the equations to the Colloquium. Subsequently Wald published papers
{15}, {21} on these ideas in the Ergebnisse, the first publications in his long list of
contributions to mathematical economics. They have become classics in the field.
Here, for the first time, economic equations were not merely formulated. The
number of equations was not merely compared with the number of unknowns.
The equations were solved. It was Schlesinger’s modification of the original
equations of Walras and Cassel which made them soluble. Soon after, I recom-
mended Wald to Oskar Morgenstern, then director of the Austrian Institute
for Business Cycle Research (Konjunkturforschung), and Morgenstern gave
him employment in the Institute.

At that time there occurred a second event which proved to be of crucial
importance in Wald’s further life and work. The Viennese philosopher Karl
Popper, now professor at the London School of Economics, tried to make pre-
cise the idea of a random sequence, and thus to remedy the obvious shortcomings
of von Mises’ definition of collectives. After I had heard (in Schlick’s Philo-
sophical Circle) a semitechnical exposition of Popper’s ideas, I asked him to
present the important subject in all details to the Mathematical Colloquium.
Wald became greatly interested and the result was his masterly paper on the
self-consistency of the notion of collectives {29} in the Ergebnisse. He based
his existence proof for collectives on a twofold relativisation of that notion.

Let M be a (finite or infinite) set of symbols, such as H(ead) and 7T'(ail), or
1,2, 3, 4, 5, 6, or the points inside of a given square of the plane. By a selection
of nth order Wald means a function f, associating with every ordered n-tuple
of elements my, --- , m, of M a value fo(m;, -+, m,) which is either 0 or
1; by a selector (Auswahlvorschrift), a sequence S = {fo,fi, - ,fn, -}
A selector makes it possible to select from every sequence of elements
{mi, me, -+, My, -} of M a subsequence

S{m17m27 tety Ma, "'} = {milimi'z’ Ty, My, "'}
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by the following procedure:

m;, is the first element such that fi,_1(my, + <+ , my-1) = 1,

.

m, is the first element after m,,_, such that fi_1(m1, -+, my—) = 1,
and so on. Clearly, the selected subsequence may be infinite, finite or even
vacuous.

Now let there be given (1) a set & of selectors (including the identity which
associates every sequence with itself); (2) a set I of subsets of M. Then Wald
calls a sequence {my, -+ ,m,, ---} an (&, M)-collective if for every set M*
belonging to I there exists an S-probability P(M*, &) in the following sense:
every selector S belonging to & selects from {m;, - ,m,, ---} a subse-
quence S{m; , -+ ,my, ---} = {mi, -+-,mi , -} such that the relative
frequency of M* among the initial segments of the subsequence [that is, the
number of elements of M* among {m;, , - -- , m;} divided by n] converges to
P(M* &) asn—> .

The two parameters & and I must be given if collectives are to be discussed
in a self-consistent way. Although Wald’s relativisation restricts the original
unlimited (but unworkable) idea of collectives, it is much weaker than the
irregularity requirements of Copeland, Popper, and Reichenbach. In fact, it
embraces these requirements as special cases.

It was through this work on collectives and a study of time series {24} under-
taken at Morgenstern’s suggestion that Wald became interested in the founda-
tions of statistics. But he kept on working at geometric problems, and added
interesting remarks {25}, {26} to my first applications of metric methods to
the calculus of variations.

Meanwhile the political situation in Austria deteriorated from month to
month. The Ergebnisse was criticized (with specific reference to Wald) for its
large number of Jewish contributions just when I felt that we ought to honor
that journal by making Wald co-editor. Issue 7 was edited by Godel, Wald,
and myself. But Issue 8 containing Wald’s paper on collectives was destined to
be the last of the series. Hahn was dead. Schlick had been assassinated. Viennese
culture resembled a bed of delicate flowers to which its owner refused soil and
light while a fiendish neighbor was waiting for a chance to ruin the entire gar-
den. I left the country. A year later Hitler marched into Vienna. Schlesinger,
who occupied a rather prominent position, chose death that same day. These
events foreshadowed the fate which later overtook Wald’s family to which he
was deeply attached. His parents and his sisters were murdered in the gas
chambers of Ossoviec (Auschwitz); his brother Martin, the engineer, perished
as a slave laborer in Western Germany.

Wald himself continued for a few weeks after Hitler’s arrival in Vienna. He
was dismissed by Morgenstern’s successor but not otherwise molested. But I
was greatly worried about his future as long as he remained in Austria, and with
other friends, I tried to get him to the United States. Thanks to his work in
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econometrics and statistics he was permitted to come. Economists and statisti-
cians soon became aware of his potentialities, and from the outset he was grati-
fied to feel that this country would make effective use of his talents and abilities.

When he ceased working in the field of geometry, it was not for lack of in-
terest. It was for lack of time. Whenever he and I met during the summer (we
usually spent our vacations together in the mountains) we discussed both geom-
etry and statistics. Wald’s last geometric papers, {53}, {63}, date from 1943. By
a strange coincidence, they deal with the “between” relation to which his first
publication was devoted—but on a different level. In 1942 I had introduced a
statistical metric in which the distance between two points is a distribution
function rather than a number. Wald improved my original triangle inequality,
upheld the definition of betweenness by a triangle equality, and proved that,
even on the statistical level, betweenness has the properties by which, in 1930,
he had characterized it among the ternary relations in metric spaces.

I have often wondered what would have happened if Wald had continued
his geometrical work. A safe conjecture is that, if he had returned to geometry,
that subject would have been greatly benefited. He and I had planned to work
~ut a new differential geometry and vector analysis. If we had succeeded, a
metric theory of the curvature of higher-dimensional spaces would now be in
existence.

Another probable conjecture is that his geometric work would not have found
the acclaim accorded to his work in applied mathematics. Geometry is not
fashionable today. Although it is bound to outlive some current ephemeral
fashions, even Wald’s powerful talent would probably not have turned the tide.
He might have remained a great but relatively unknown geometer.

Be that as it may, what Wald actually accomplished in geometry is of the
first importance. I realize the high value of his papers on econometrics and of
his book on sequential analysis, and I am aware of the profound influence which
his theory of decision functions is bound to exert for decades to:come. But
nevertheless I believe that anyone who really understands his theory of the
curvature of surfaces will find that this work is second to none of Wald’s other
achievements.



