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1. Summary. Given m + n real integrable functions f,, - , fm, g1, - =, gn
of a point z in a Euclidean space X, a real function ¢(z;, - - - , 2.) of n real vari-
ables, and m constants ¢;, - -+ , ¢m , the problem considered is the existence of a

set S’ in X maximizing qb(/ g dx, -, f Gn dx) subject to the m side condi-
8 8

tions [ fi dr = ¢;, and the derivation of necessary conditions and of suf-
8
ficient conditions on S°. In some applications the point with coordinates
( f gdx, -, f Gn d:v) may also be required to lie in a given set. The results
8 8

obtained are illustrated with an example of statistical interest. There is some
discussion of the computational problem of finding the maximizing S°.

2. The problem. The Neyman-Pearson fundamental lemma concerns the
problem, given a number of integrable functions, to form their integrals over a
variable set S, and to find a set S° (if any) for which one of these integrals is
maximum subject to the condition that the others have fixed values. The gen-
eralization considered here is to maximize a function of several integrals, subject
to similar side conditions.

More precisely, we are given m -+ n integrable’ functions fi(z), -+ - , fm(z),
gi(x), -+, ga(x) of a point z in a Euclidean space S, a real-valued function
¢(z1, -+, 2,) of n real variables defined on the n-dimensional Euclidean space
Z, or at least on a suitable subset of Z to be specified later, m constants¢;, - -+,
¢m , and a subset A of Z. Let S denote any Borel set in X and form

(2.1) ¢<fsg1dx, ,[sgndx)

The problem is the existence and characterization of sets S° which maximize (2.1)
subject to the m conditions

(22) ff,dx = Cq (’t = 1, crry m)

and the further condition that the point, with the coordinates

<fgldx, ,fg,.d.’l?)
8 8

! Work of Scheffé sponsored by the Office of Naval Research.
2 With respect to Lebesgue measure on the Borel sets.
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lie in the given subset A of Z. If the only side conditions are of the form (2.2)
then A = Z. The Neyman-Pearson lemma refers to the case where

(2.3) n =1, ¢ =z, A =7Z

Briefly the history of the problem is the following. It arises in the. Neyman-
Pearson theory of optimum statistical tests and its generalizations. It was
treated in the important special case (2.3) by Neyman and Pearson [5], [6], who
obtained the inequalities (4.1) below, with the symbol X, in (4.1) replaced by
X, as sufficient conditions for a maximizing set S°. The problems of existence
and necessity in the case (2.3) were recently solved in all generality by Dantzig
and Wald [1]; the necessity problem in this case had been solved under some
restrictions (including m = 1) in the original paper [5] of Neyman and Pearson.
A statistical example which does not come under the special case was recently
investigated by Isaacson [4], who obtained sufficient conditions for his problem;
this example falls under our treatment and is discussed in Section 8.

In this paper we obtain an existence theorem, and necessary conditions and
sufficient conditions for a maximizing S°. To obtain these the results of Dantzig
and Wald are employed, as well as their device of considering certain vector
measures to which the Lyapunov theorem [3] may be applied. Construction and
computation of a maximizing S° are also considered.

3. Further notation and the condition @. The symbol S (with or without
superscripts) will always be understood to denote a Borel set in the Euclidean
space X, and the symbols f;, g; will always denote integrable’ functions of a
point z in X. In addition to the n-dimensional Euclidean space Z of points
z = (21, -+, 2), it is convenient to introduce an m-dimensional Euclidean
space Y of points y = (y1, -+, Ynm). Furthermore, y(S) will denote the point
in Y with the coordinates

ui(S) = [ 1o G=1-,m)
and z(S) the point in Z with the coordinates
2{8) = fg;dx t=1,---,n)
S

Let ¢ be the point in Y with the coordinates (¢;, - -, ¢m). Then the quantity
(2.1) to be maximized may be written ¢(2(8)), and the side conditions as y(S) = ¢.
and 2(8) ¢ A.

Call M the range of the (m + n)-dimensional vector measure with components

3.1 (), -+, ym(S), 21(8), - -+, 2a(8),

that is, M is the set of all points with coordinates (3.1) generated by the.totality
of Borel sets S in X. Then M is a set in the (m + n)-dimensional space ¥ X Z.
By the Lyapunov theorem [3] M is closed, bounded, and convex. We shall call
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M, the set in Z which is the cross section of M by y = ¢, that is, M, is the set
of all points z for which there exists an S with 2(S) = ¢z, y(S) = c. The projec-
tion of M on the space ¥ will be denoted by N, so N is the set of points y for
which there exists an S with y(S) = y. Thus the side conditions y(S) = ¢ can
be satisfied if and only if ¢ ¢ N.

From the Lyapunov theorem N is a closed, bounded, and convex set in Y.
Let 7 be the smallest-dimensional linear space containing N. In the following it
is crucial whether the given point ¢ is an inner point or boundary point of N
with respect to the topology not of ¥ but of #. A point y of N is called an ¢nner
point of N if there exists an m-dimensional neighborhood U of y such that
U nx C N, otherwise it is called a boundary point.

If ¢ is a boundary point the inequalities of the Neyman-Pearson lemma and
its generalizations have to be considered in a certain subset X, of X determined
by the following definitions. Regard the points in Y as vectors and denote the

inner product of two vectors ¢ = (&, -, &n) and y = (41, *++, Ym) by
£y =&y + - + Enym. Then (&, -+, £) is called a maximal set of vectors
relative to a boundary point ¢ if
(3'2) Ei'éi # 0 (1’ = 17 R 7'),
(3.3) gy < e forally e N,
for all y ¢ N for which £*-y = £'-¢,
(3.4) £y <&
i=1,-,p—Lp=2--,r
A maximal set (¢, ---., £) is called a complete maximal set relative to c if
(¢, -+, &, £™) maximal relative to ¢ implies £ is a linear combination of
g, .-+, £. The existence of a complete maximal set relative to every boundary

point ¢ is shown by Dantzig and Wald ([1], Lemma 3.1). The set X. is now
defined as X if ¢ is an inner point, while if ¢ is a boundary point it is defined as
the subset of X in which

(3.5) 2 £ifi(®) = 0 (t=1--,1),
pm
where (¢, - -+, £) is a complete maximal set relative to ¢, and & = (¢1, -+ -, &)
If D is the domain of definition of ¢(2) and ¢(z) has a differential at 2° =
(2%, -+, 2% & D, then by definition there exist constants® a; , - - - , a, such that
forze D ‘
(3.6) ¢(z) — ¢(2°) = Zl afzi — 29 4 o(|| 2 = 2" |]),

3 If furthermore 2° is an interior point of D, then d¢/dz; exist at 2 and equala; (¢ = 1,... ,
n). In the converse direction, if d¢/9z; exist in a neighborhood of z® and are continuous at 2°,
then ¢(z2) has a differential at 2°. However, in the applications below z° may be a boundary
point of D.
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where
n 1/2
le=2ll=[E -]
=1
If S°is a set such that ¢(2) has a differential at 2° = 2(S°), and if a;, - - - y Gn
denote the constants in.the differential at 2° as in (3.6), then S° will be said to
satisfy the condition @ if there exist constants k, , - - - , k., such that
2 aigdx) 2 2 kif A=) a.e. in X, n S’,
=1 j=1
3.7) . ’m
2 aigix) < D kif,(x) a.e in X, — S
=21 =1

It should be noted that in general the set S° must first be known before the
constants a; can be evaluated. This makes the problem of constructing sets S
satisfying the condition € and the side conditions inherently more difficult in
the general case than in the special case (2.3), since in the general case the
coefficients a; in the condition € are functions of the set S to be determined,
while in the special case there is only one a; which is always unity. Further
attention is given to the problem of construction and computation of a maxi-
mizing S in Section 9.

About the condition € we remark also that if ¢ is a boundary point, X, will
frequently be a set of measure zero, in which case the condition @ is vacuous.
In this case it may be shown ([1], Lemma 3.2) that the set S satisfying the
side conditions y(S) = c¢ is unique up to a set of measure zero.

4. Results of Dantzig and Wald. These concern the special case (2.3). They
include an existence theorem which we shall not need (it is covered by our
Theorem 5.1) and the following theorem which we shall. Here we write
gi(x) = g(x). The set X, is defined in connection with (3.5).

TueoreM 4.1 (Dantzig and Wald). If 8° is a set satisfying y(S°) = c, then a

necessary and sufficient condition that S° maximize f g(s) dx subject to the condi-
S

tion y(8) = c s that there exist constants k, , - - - , k. such that
g(x) = 2 kifi(x) ae inX.nS,
=1
(4.1) o
g(x) £ D kifi(x) ae in X, — S
=1

b. Existence theorem. For our method of proof of the existence theorem to
succeed it is essential that the set A be closed. It may nevertheless be possible
to use the theorem in situations where the given 4 is not closed, by applying it
to a closed set A; containing A and then arguing that the maximum cannot
occur in A; — A; an example is given in Section 8.
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THEOREM 5.1. If there exists a set S satisfying the side conditions y(S) = ¢ and
2(S) € A, if ¢(2) is continuous in M, n A, and if A is closed,’ then there exists a
set S° mazximizing ¢(2(S)) subject to the conditions y(8) = cand 2(8) ¢ A.

Proor. Since M is closed and bounded, so is M, , and therefore M. n A. Also
M. n 4 is nonempty because there exists an S satisfying y(S) = c and 2(S) ¢ 4.
Since ¢(z) is continuous in the nonempty closed bounded set M, n 4, there exists
a point 2° ¢ M, n A such that

#(z") = sup ¢(2) forzeM,n A.

Now 2° ¢ M, implies the existence of an S° with 2(S°) = 2° and y(S°) = ¢. For
any other S satisfying y(S) = ¢ and 2(8) € A we have 2(S) ¢ M. n A, hence
6(2(89)) = ¢(") = ¢(2(S").

6. Necessary conditions. Suppose ¢(2) takes on its maximum valuein M. n 4
at 2° = 2(8°). The hypotheses of the following theorem imply that 2° is an
interior (in the topology of the n-dimensional space Z) point of A. This will of
course be the case if 4 is open, and in particular if A = Z. On the other hand
it is easily seen that z° must be a boundary (same topology) point of M. n A,
unless all the constants a; (see equation (3.6)) in the differential of ¢(2) at 2°
vanish. An 8’ for which all a; = 0 at 2° = 2(8°) will always satisfy the condition
e (with all k; = 0).

TrEOREM 6.1. If S° is a set for which 2(S°) is an interior point® of A, if $(2) is
defined in M, n A and has a differential at z = 2(S°), then a necessary condition
that S° maximize ¢(2(S)) subject to the conditions y(S) = ¢ and 2(S) € A s that
S° satisfy the condition €.

Proo¥. Assume S’ satisfies 4(S) = ¢ and 2(S) ¢ 4, and maximizes ¢(2(8)) sub-
ject to these conditions. Let 2° = 2(S°) = (2}, - - -, 2%), let a; be the constants
in the differential of ¢(z) at 2° as in (3.6), and define

43(2) = a + Zlaizi,

where
a = ¢(2°) — Z;afz‘i.
Then
#(2(8)) = a0 + E a:2:(8) = ay + g aifsg; dz,
(6.1) $e(S) = a0+ [ (z @ g,«> ax

4 A hypothesis of Theorem 5.1 is that there exists a set S! satisfying the side conditions.
Let 2! = 2(8!). The hypothesis that A is closed may be replaced by the sometimes useful
weaker hypothesis that the set {z]| z ¢ (M. n A) and ¢(2) = ¢(2!)} is closed.

& The proof shows that this hypothesis may be replaced by the weaker one that 20 = z(S°)
is a limit point of L n A for every line L in Z through 2°.
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It will suffice to prove that S° maximizes ¢(z(S)) subject to y(S) = ¢. If this is
true we can apply the necessary condition of Theorem 4.1 to g(z) = 2 w1 ag:(z),
and this necessary condition becomes our condition €.

Suppose then that S° does not maximize $(z(S)) subject to y(8) = ¢. Then
there exists an S with y(S") = ¢ and ¢(2(S")) > #(2(S°)). We note that z' =
2(S") is in M, but not necessarily in A, and that 2' # 2° since ¢(z') > ¢(2°).
Let p = || 2 — 2°||, and hp = ¢(z') — $(z°), so that A > 0. Write

2= (1 - NS+t O=NZ1).

Then all 2* ¢ M, since M, is convex. Because ¢(z) is a linear function of z with
$(=") = ¢&°) + hp, it follows that
(6.2) $() = $(") + M.
From (3.6) we haveforze M. n A
#(x) = é(2) + o(|lz = 2°|]),

and hence if 2* ¢ M. n A4,

$(@) = ¢(2") + o(p).
Thus there exists a § > 0 such that 0 < \p< s and 2" ¢ M, n A imply

6" — #@)/ (o) | < B,
and so
¢(@) > 6(") — M.

From this, (6.2), and ¢(2°) = ("), we get
(6.3) $(@") > ¢(")
if0 <X < §/pand 2 ¢ M, n A. Recalling that 2° is an interior point of A, we
see there isa M/, 0 < N\’ < §/p, such that 2" ¢ A. Also 2" e M., s0 2" ¢ M.n A,
and (6.3) is true for A = \’. But 2"’ ¢ M, n A also implies that there exists an
S with y(S™) = ¢, 2(8") = 2% & A. For this 8" we have ¢(2(S*")) > ¢(2(S°)),

so 8° does not maximize ¢(2(S)) subject to y(S) = ¢ and 2(8) ¢ A. This is a
contradiction, and hence S° maximizes ¢(z(S)) subject to y(S) = c.

7. Sufficient conditions. It is convenient to introduce a weakened form of the
property of concavity of a function; which we shall call quasi-concavity; re-
lated concepts have been considered by de Finetti [2]. A function ¢(z) defined
in a convex set D is said to be concave in Dif 2’ ¢ D, 2" ¢ D, 2" = (1 — N)2° + A,
and 0 = A = 1 imply

$(") = (1 — V(") + M(2).
If D is open and convex, and ¢(z) has continuous second partial derivatives in

D, then a necessary and sufficient condition for ¢(z) to be concave in D is that
the n X n matrix

(7.1) (9°¢/02:02;)
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be nonpositive in D, that is, all the characteristic roots be nonpositive in D.
We shall say ¢(2) is quasi-concave in a convex set D if there exists a real dif-
ferentiable functlon ¥(¢) on an interval I containing the range ¢(D) of ¢(2),
with 0 < ¢'(¢) < 4+ for¢ I, and such that ¥(¢(z)) is concave in D. We
note that concavity implies quasi-concavity (take ¥(¢) = ¢), but not conversely
(for example, with n = 2 consider ¢(z) = 212, in the set D where z; > 0, z, > 0,
and take ¥(p) = log ¢).

THEOREM 7.1. If the set S° satisfies the side conditions y(S) = cand 2(S) ¢ A,
if ¢(2) is defined and quasi-concave in a convex set contazmng M. n A and has a
differential at z = 2(S°), then a sufficient condition that S° mazimize o (2(8)) sub-
Ject to y(S) = c and 2(8) ¢ A is that S° satisfy the condition €.

Proor. Suppose first that ¢(2) is concave instead of merely quasi-concave in
a convex set D D M. n A4, that the other hypotheses of the theorem are satis-
fied by ¢(2) and S°, and that S° satisfies the condition @. Write 2° = 2(8% and
define the linear function $(z) as in the proof of Theorem 6.1. Then S° maxi-
mizes $(2(S]) subject to the condition y(S) = ¢, since the condition € now
becomes the sufficient condition of Theorem 4.1 applied to ¢(2(S)) in the form
(6.1).

Next We note that ¢(z) < ¢(z) in D. Assume the contrary, that there exists
a point 2' ¢ D with b = ¢(z') — ¢(z) > 0,802 % 2° smce¢(z) = ¢(z) If2 =
1 = N2+ (0 < X = 1), then 2* ¢ D. Define ¢(z) 1 = N + r(2).
Then ¢(z") = #(2*) since ¢(z) i is concave. But ¢(z") = $(z") — Ab, and hence,
since ¢(z) has a differential at 2°, ¢(2) < ¢(2") + A\b = $(2") for A sufficiently
small but positive. This contradicts () = ¢(2).

If now S is any set satisfying y(S) =cand2(S) e A,thenz(S)e M,n A C D,
hence ¢(2(S)) = (2(8)) < #(2(8")) = ¢(2(8), the second inequality because
S° maximizes ¢(z(S)) subject to y(8) = ¢. The theorem is now proved in the
case where ¢(2) is concave.

Suppose next ¢(z) is quasi-concave in D. By definition there exists a differ-
entiable function ¥(¢) on an interval I containing #(D), such that 0 < ¢/(¢) <
+x for ¢ ¢ I, and ®(2) = n//(qs(z)) is concave in D. Since y(¢) is a strictly in-
creasing function on I, a set S° maximizes ¢(z(S)) subject to y(S) = ¢ and
2(8) € A if and only if it maximizes ®(2(S)) subject to the same side conditions.
Since ®(z) is concave in D we may apply the above result to ®(z) after we verify
that ®(z) has a differential at 2° = 2(8°). But this is the case since ¢(2) has a
differential at z° and ¢/ (¢) exists at ¢ = ¢(z°). Let y = ¢/ (#(2%). Then the con—
stants a; in the differential of ®(2) at 2° are equal to y times those for ¢(z) at 2°.
The factor v can be absorbed into the constants &, , - - , k. of the condition
Csince 0 <y < + .

The following corollary may be useful in applications where it is easier to
prove that ¢(z) is suitably dominated by a quasi-concave function than that

¢(2) is quasi-concave.

COROLLARY 7.1. If the set 8° satisfies the side conditions y(S) = ¢ and z(S) €A,
if U is a neighborhood in Z of z° = 2(S°), if ¢(2) is defined in a set DD U u M. n
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A) and has a differential at 2°, if $*(2) is defined and quasi-concave in a convex set
D* D D, and if p(2) < ¢*(2) in D while ¢(2°) = ¢*(2°), then a sufficient condition
that S° maximize ¢(2(S)) subject to y(S) = ¢ and 2(S) ¢ A s that S° satisfy the
condition C.

Proor. The corollary will be an immediate consequence of applying Theorem
7.1 to ¢*(2) instead of ¢(2), providing we can prove that under the hypotheses
of the corollary ¢*(z) has a differential at 2°, and that this is the same as the
differential of ¢(2) at 2° (else a set of constants af, - -, a* different from a, ,
-++, a, would appear in the condition @).

Suppose ®*(z) = ¥(¢*(2)) is concave in D*, where 0 < yY(¢) < + o for ¢ ¢
I O ¢*(D*). Let ®(2) = ¢(#(2)). Since ¥(¢) has a single-valued differentiable
inverse ¢ on the interval J = y(I), and *(2) = ¥ I(@*(2)), ¢(2) = ¥ '(®(2)),
it will suffice to prove that ®*(z) has a differential at z° and that this is the same
as the differential of ®(z) at 2°. Since ®*(z) is concave it has a plane of support
w = &(2) at 2, that is, there exists a linear function $(z) such that #*(z) < &(z)
for z £ D* and ®*(2°) = &(2°). We observe next that this plane is identical with
the tangent plane w = &(2) to the surface w = &(z) at 2°. For, suppose the
contrary. Then because ®(z) and &(z) are both linear and $(z") = &(z°), there
must exist a point 2! where &(z') < &(2'). With 2* = (1 — \)2° + N, (") <
&(2") for A > 0. Therefore, since ®(z) has a differential at 2, 8(2) > &) for
A sufficiently small and positive. But this implies the contradiction ®(z") >
*(2"). From the relation ®(z) < d*(z) = ®(2) in D, the desired conclusion
about the differential of ®*(z) at 2° easily follows.

8. An example. We will illustrate our results by considering their application
in the theory of Type D critical regions for testing simple hypotheses concerning
several parameters. Type D regions were recently defined and studied by Isaacson
[4]; they are locally optimum unbiased critical regions which are a generalization
of the Type A regions of the Neyman-Pearson theory for the one-parameter
case.

Suppose X is the sample space and there exists a probability density p(z, 6)
for § = (6,, ---, 6) in the parameter space Q. The hypothesis to be tested is

is Hy : § = 6°. We assume that for any set S in X the integral f p dz has second
S

partial derivatives with respect to 8; and 6,(z,5 = 1, --- , k) in a neighborhood
of 6° which are continuous at 6°, and that it can be differentiated twice under
the integral sign with respect to 6; and 6, at 6°. Denote by G(S) the symmetric

matrix ( f gz,dx>, where g;; = [0°p/860.00,]s0 . Also write
8

(8‘1) ff = [ap/aoileo (.7 = 11 T k)y m =k + 17 fm = p(xy 00)'

It is convenient to call a critical region S for testing H, locally unbiased of size
aif



GENERALIZATION OF FUNDAMENTAL LEMMA 221

_ijdx

f fadz = a, G(S) is positive definite.
8

I
=]

(j= ,--oym— 1):
(82)

If S is locally unbiased of size a the (generalized) Gaussian curvature of the
power surface at § = 6° is the determinant | G(S)|. A critical region S° is said
to be of Type D if it maximizes | G(S)| subject to the condition that it be locally
unbiased of size a. If S° is locally unbiased of size «, Isaacson obtained as a.
sufficient condition for S° to be of Type D the existence of constants k; , - - - ,.
k. such that S° satisfies

'I.‘Zl bs; gis(z) = i kifiz) a.e. in S,
(8.3) " =
'El bij gis(x) = Zl k:fz) ae inX — 8

where the matrix (by;) of constants is the adjoint matrix of G(S°).

To make the problem conform better to our previous notation we introduce
an n-dimensional space Z of points 2z, with n = 3k(k + 1), and write the co-
ordinates of z as

(211,212, et Rk, R22, " , Rk ,R33, """ ,Zkk)-
Define ¢(2) to be the determinant of the symmetric matrix (z;;), ¢(2) =
[(2:7)] , where 2z;; = z;; . With 2,;;(S) = f gs;dx, we see the problem is to maxi-
8

mize ¢(2(S)) subject to the side conditions (8.2). These may be written y(S) =
¢, where ¢ = (0, -+ -, 0, ), and 2(S) ¢ A, where A4 is the part of Z where the
matrix (2;;) is positive definite. Since ¢(2) is a polynomial in the coordinates of
z it has a differential everywhere. If we write 2° = 2(S°) and a., = [0¢/92:].0
(z £ j), we find a;; = bsi, a;; = 2b;;(¢ < j), and so the condition @ for the pres-
ent problem is Isaacson’s stated in connection with (8.3), except that the first.
inequality of (8.3) is asserted a.e. in X, n S° and the second a.e. in X, — S°.
However, it will be shown later that for all @ # 0 or 1, ¢ is an inner point as
defined in Section 3, so that the set X, is the whole space X, and Isaacson’s
condition is thus precisely the condition € in this case.

To apply our results we need to note that the set A is open and is contained
in a closed set 4, such that ¢(z2) = 0in 4, — A. Let hi(z) with ¢ = 1, -,
2* — 1, denote the determinants of prineipal minors of the matrix (z:;); these
polynomials in the coordinates of z are continuous functions of z. Since A is the
set where all h;(z) > 0, A is open. Let A; be the set in Z where all h;(z) = 0;
then A, is closed. In A; — A all hi(z) = 0, some hj(z) = 0. Thus (z;,) is posi-
tive but not positive definite in A; — A, and hence its determinant ¢(z) = 0
there.

We shall prove first by application of our existence theorem 5.1 that if there
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exists any locally unbiased critical region of size « there exists one of Type D.
Suppose then that there exists a critical region S satisfying the side conditions
(8.2). Then ¢(2(S")) = | G(S")| > 0. Theorem 5.1 tells us there exists a solu-
tion S° to the modified problem of maximizing ¢(2(S)) subject to y(S) = ¢ and
2(S) € A;. For the solution S° we must have 2(S°) ¢ A4, else 2(S8°) ¢ 4, — A4,
¢(2(8%) = 0 < ¢(2(SY)). Thus S° maximizes ¢(2(S)) subject to y(S) = ¢ and
2(S) ¢ A.

That any critical region of Type D necessarily satisfies the condition € fol-
lows immediately from Theorem 6.1.

That the condition @ is sufficient for a locally unbiased critical region S° of
size a to be of Type D may be deduced from Theorem 7.1. All the hypotheses
of this theorem will be seen to be satisfied if we show that the set A is convex
and the function log ¢(2) is concave in A. Suppose then that ¢° and ¢ are any
two points of A. It will suffice to prove that * = (1 — \)¢° + At'isin 4 and
that

(8:4) log 6(¢") = (1 — ) log ¢(¢°) + A log ¢(s")

for all \(0 £ A £ 1). Let ¢}, be the coordinates of ¢*. Then the matrices (£7;)
are positive definite for r = 0, 1. There thus exists a real nonsingular matrix H
such that both matrices H'(¢%)H and H'(t},)H are diagonal, say H'(¢7;)H =
D', where D" is a diagonal matrix with positive diagonal elements di, - - -,
di(r = 0, 1). Now

) = @ = NEY + &),
and so (£}) = K'D'K, where K = H™', and D" is a diagonal matrix with sth

diagonal element equal to (1 — A)d? + Ad}. Hence D is positive, and so is
(&%); thus ¢* is in A. Furthermore,

log (") = 2log | K | + log | D*|,
80 to prove (8.4) it is enough to verify that
log | D*| = (1 — M) log | D°| + Nlog| D',
or that
k k k
2logl(1 — N d+2adll 2 (1 —2) X logd? + A ) log di.
fuul tam] fml
But this follows from the concavity of the function log z.
We shall conclude by proving that ¢ is an inner point of N in this and similar

statistical problems with side conditions of the form

fp(x, 0)dz = 0<a<l),
8 .

[b%i_/;p(x,a)dx]”=0 G=1-,k),
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if the integral f p(z, 0) dx can be differentiated once under the integral sign
8

for all (Borel) sets S at § = 6°. With the notation (8.1), and y:(S) = f fdzx,
8
N is the set of all y(S) in the m-dimensional space ¥ with m = k 4+ 1. We ob-

serve that the set NV is symmetrical with respect to the point (0, --- , 0, ), that
isify = (1, ", Ynt, Ym) isin Nsois (—y1, ***, —Yma, 1 — ym). For
any y ¢ N there exists an S such that y(8) = y. The point y(X — S) is sym-
metrically placed with respect to (0, ---, 0, %), since for¢ = 1,---,m — 1,

0+ 0 = 8) = [2{ [sm0 s+ [ smoasf], =0

while ym(S) 4+ ym(X — S) = 1. On taking S to be the empty set we find the
point 4° = (0, ---, 0, 0) in N; by symmetry N contains v = (,---,0,1),
and by convexity the line segment L joining 3° and y' and containing ¢ = (0,
+++,0, a). Since 0 < a < 1, ¢ is an inner point of the line segment L. From
this and the symmetry of N it may be argued geometrically that ¢ is an inner
point of N, but we shall give an analytic proof instead.

We shall suppose now that c is a boundary point of the convex body N and
from this derive a contradiction. There exists a linear function k(y) = My, +
++ 4+ hmYym not identically zero in N such that y = ¢ maximizes h(y) for y in
N. The maximum value of h(y) is thus hna, and hence h(y') = hpy < hme and
h(y®) = 0 = hna; therefore h,, = 0. Since zero is the maximum of h(y) for y
in N and h(y) does not vanish identically in N, there exists a set S in the space
X such that h(y(S)) < 0. But

AUS) = 2 heyds) = —":_21 heydX — 8) = —h(X — S)).

Thus h(y(X — S)) > 0. But A(y) =< 0 for y in N. This is the desired contradic-
tion.

9. Remarks on computation of a solution. We have mentioned that the problem
of construction of a solution is much more difficult here than in the special
case covered by the Neyman-Pearson fundamental lemma. We now sketch a
general approach which perhaps might be modified and expanded to a method
of numerical computation if desired. The basic idea is that the condition €
reduces the search for a minimizing set arnong all Borel sets to that for a mini-
mum of a function of n + m real variables or an equivalent problem.

Denote the (n 4+ m)-dimensional vector (ay, -+, an, K1, ", km) by v =
(l)l y Tty 1)n+m), and by S(v) the set {27 I E«:‘_l aig;(x) g Z?—l xjfj(x)}. W]th
y(S) and 2(S) defined as before, let Y (v) = y(S(®)), Z(v) = 2(S(v)). If ¢(2) has
a differential at z = Z(v), denote the differential coefficients there by ®,(v), - - - ,
®,(v). Let 8(2, A) be a continuous function of z which is nonnegative and vanishes
if and only if z € A (this implies A is closed): an example is the Euclidean dis-
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tance from z to A. We now define three functions of v:
D(v) = 8(Z(v), A),

E@w) = 21 [Y;() — ¢el’,
Ju—
where Y;(v) are the components of Y (v), and
F(v) = 21 [®.(v) — vd®

The function F(v) is defined only for » such that ¢(z) has a differential at z =
Z ().

We next make the following simplifying assumptions (which would be lightened
if the sketch of our method were expanded):

(i). The conditions of our existence theorem, Theorem 5.1, are satisfied.

(ii). X, = X, that is, ¢ is an inner point of N (see Section 3).

fé i gi(z) — f;l if @) = o} n (X — X9,

=

(iii). The set {x

where
X'={z|g(@ =+ ga@) = i@ = -+ = fu(z) = 0},

has measure zero for all vectors v with the components a; , - - - , &, not all zero.

(iv). For any solution S°, z° = 2(S°) is an interior point of 4, and ¢(z) has a
nonzero differential at 2°.

(v). ¢(2) is defined and quasi-concave in a convex set containing 4 n M, .

Under assumption (i) a solution of course exists, and under this set of as-
sumptions it is easy to see from Theorems 6.1 and 7.1 that a necessary and
sufficient condition for S° to be a solution is that, up to a set of measure zero
and a subset of X°, 8° = S(»°), where ¢° is a vector » with not all components
v, * -, U, zero, and

D@°) = E@°) = F(°) = 0.

The problem has now been reduced to finding a vector » with v, , - - - , v, not
all zero satisfying D(v) = E(v) = F(v) = 0. This problem can be formulated
in various equivalent ways; one is to minimize D + E + F.

An inelegant aspect of the above approach is that if »° is a solution of the
computational problem, then for any positive A, S(\v°) = S@°) but A’ does
not satisfy F(\W°) = 0 unless A = 1, that is, A is no longer a solution of the
computational problem but S(Av°) is still the same solution of our actual varia-
tional problem. This situation arises from our having required the components
v;(z = 1, ---, n) to be equal to ®;(v), when it is sufficient that they be propor-
tional with a positive constant of proportionality. Such a proportionality holds
if and only if the function

n n 3 n
Fo) = {Z > [<1>j<v>1”} ~ 3w

j=1
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vanishes. The ijlelegancy could thus be removed by replacing F(v) in the above
discussion by F(v). The solution of the computational problem could then be
normalized by adding one of the conditions

n n+m

Svi=1 or 2 vi=1

i=1 i=1
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