A CLASS OF EXPERIMENTAL DESIGNS USING BLOCKS OF
TWO PLOTS!

By O. KEMPTHORNE
ITowa State College

1. Introduction and Summary. Over the past fifteen or so years, a large
number of classes of experimental designs have been evolved by Yates, Bose
and Nair and others (see [1] for a systematic account). The aim in all cases
was to evolve patterns of observation which could utilize natural groupings in
the experimental material, such as for instance litters of mice or small numbers
of plots perhaps contiguous to each other. By arranging the treatments to be
compared in specific ways which utilize the natural grouping, it is possible to
enable treatment contrasts to be estimated by comparisons of observations on
experimental units, which we shall call plots, within the natural groups. This
enables the comparisons to be made usually with considerably greater accuracy
than would obtain if the experimenter were forced to randomize the positions
of the treatments without respect to these groupings.

In experimental work in some branches of biology, natural groups of size two
are of fairly frequent occurrence, for example twins, or halves of plants, or halves
of leaves. The development of experimental designs is not complete in this par-
ticular respect. The designs which have been developed for blocks of two plots
or experimental units are as follows:

(1) symmetrical pairs (Yates, [2]) which require (¢ — 1) replicates if there are ¢
treatments.

(2) quasifactorial designs if the number of treatments is a power of 2 (see [1]
in this respect).

It appears therefore that development of a class of designs using blocks of two
plots is desirable, and this is the purpose of the present paper.

2. Structure of the Designs. Let the number of treatments be n and suppose
r replicates of each treatment are desired. The structure of the class of designs
is that treatment 7 (= 1, 2, --- , n) is placed in a block with each of the treat-
ments 7 + s, + s+ 1, --+ ,7+ 8 + r — 1, where each of the numbers ¢4 s
to7 + s + r — 1 is to be reduced modulo =, that is, is to be replaced by the
remainder after dividing it by n considering 0 to beidentical to n. This structure
is possible only if 2s + r — 1 = n, thatis,if » 4+ 1 — riseven.

The pattern of observations is specified therefore by » and 7, and n + r — 1
must be even. The number r is the number of times each treatment is replicated
and the total number of blocks is rn/2 and of plots is rn. In practice the treat-
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EXPERIMENTAL DESIGNS 77

ments would be arranged in random order before making up the pairs of treat-
ments which are to lie in a block together and these pairs would be assigned to
the blocks at random, and the individuals in the pair assigned to the plot in the
block at random.

3. The Analysis of the Designs. On the basis of the usual assumption of addi-
tivity of treatment effects, and by virtue of randomization, we may apply the
method of least squares to obtain estimates of treatment comparisons. These
normal equations may be obtained from the standard reduced normal equations
for the two-way classification with unequal numbers, namely

2 . ]
(1) {NJ—ZZ%B}%—Z{Z@#};J’:QH ]=1y2y"')?7'
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where y;; is the yield of jth treatment in 7th block, n;; is the number of times jth
treatment is represented in the 7th block

N.j=znij, N.. =ij,
1 J

Nij
Qi=Y;— Z,:]\Tj Y.
where YV.; = >_; Yi;, Yi. = 2. ;y:; . In this instance N.isr forallj, N, is 2
for all 7, and we get

r
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J
where A;;/ = 1if 5/ and j occur in a block together and is zero otherwise. These
equations may be written as A% = Q.

The matrix of coefficients A in (2) is a special type of matrix, known as a
circulant (see for example Ferrar [4]). The first row consists of r/2 followed by
(s — 1) zero’s followed by r terms equal to — %, the remaining terms being zero.
The second row is obtained from the first by moving the elements along one
step, putting the last element of row one as the first element of row two and so
on. In the present instance the circulant matrices we are concerned with are
also symmetrical so that the characteristic roots are real. The roots are also
nonnegative.

We shall now review briefly some properties of circulant matrices. The circu-
lant matrix will be denoted by [a1a: - - - @], that is, by its first row. The proper-
ties we need are as follows.

(i) The determinant of the circulant matrix [ma; - - - a,)] is equal to

Il + awi + asw? + «++ + anw?™,

=1

where w;, 7 = 1,2, --. , n, are the nth roots of unity.
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(ii) The characteristic matrix is also a circulant and therefore has a deter-
minant equal to

n
Illa: = X + aowi + asw? + -+ + a0},

i=1
so that the latent roots of the matrix are
Ni = a1 + aqw; + agw’i + -+ - awl, 1=1,2 -+ n.

The matrix A is singular and the equations therefore do not have a unique
solution, corresponding to the fact that the 7;’s are not estimable (see for in-
stance [1], p. 77). However, it is easily seen that any comparison of the r,’s,
say D_\;7;, with D_\; equal to zero is estimable. It is also known that we may
impose any condition on the normal equations, A7 = @, so that we obtain a
unique solution say %, and that the best linear unbiased estimate of A7 =
D NiTi, 2 = 0, is equal to \'#, . The simplest condition which may be im-
posed is that )_#; = 0 and the solution may be obtained by the device of writ-
ing the normal equations in the form

@ (50)(2)-©)

where ¢ denotes an n X 1 matrix whose elements are unity. We shall denote the

matrix
A
¥ 0

by A* and it is seen that A* is nonsingular, so that it has an inverse.
Now consider the inverse of A*. In full, we have to find the matrix C with
element c¢;; , such that

ay A G, 1
Cn Ci12 s Cin C1,n41
a, a e An—-1 1
= In+1 )
Cn1 Cn2 e c Cn,n41
a2 a3 .. a] 1 n n. nn n,n+
1 1 --- 1 o] \Eri1 Caprz tt Capln Crtlindd

where 1,41 is the (n 4+ 1) X (n 4 1) identity matrix. It can be shown easily
that
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Cjnt1 =

S

’ .7 = 11 21 MR (21 Cntl,ntl = Oy

and that the matrix A* is symmetrical, so that C is also symmetrical.

Now let wy , wy, « -+, w, be the nth roots of unity, where w; = 1, w, = w =
cos 2r/n + 4 sin 2r/n and w; = w’, and consider the first column of C. It is
given by the equations

.
ay Q2 - ar, 1 Cun (1
an @ **°* Qpn 1 C12 0
a a -+ a 1f | cin

1 1 -+ 1 0 law) (O

Take any root of unity, say w;, and form the sum of row 1 plus w; times row 2
plus w? times row 3 and so on, to w? ™" times row n, and we get

-1 —2
(ecu+ wi e + wi e + -0 + wic)Ai = 1,

where \; is as defined above. Doing this for all the nth roots of unity we obtain
the set of equations in the c;;’s.

(0
1 1 1 e 1 fCu 1
1 w;—l w;'z s W2 C12 )\2
n—1 n—2 1
1 w3 w3 LY wa 613 -_— —
Az
|1 wiml Wit oo wa) lein 1
A
But
1 1 1)1 1 1
1 owe oo w1 wit e
1 e n—-1 1 w;"l [P w3 = nln ;

1 —1
1 wa -+ wi) (1 wi™ o w,
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so that
0
(1 1 1 ... 1)1
fcu ‘)'\"
1 we wi --- wyt||™?
Gz 2 n—1 1
(4) = J. 1 ws W3 e W3 i’;
n .
tch 1 wa wh --r wi 1
An)

By the same process one can show that the matrix C is a circulant after the last
row and column, which we know, are blocked out. We have therefore obtained
the matrix C.

Utilizing the fact that the N’s are real, so that the imaginary parts must be
identically zero, we have therefore

Ait1 = a1 + az cos j0 + a; cos 256 + -+ + a, cos (n — 1)j8,

where § = 2x/n, and

oy = 1 icos k-1G— 1)0'

1
(5) = X—; N k=2 Ak

St

>
=2
Since a; = r/2 and the remaining a’s are either —% or zero, we find that

1 sin (n — r)j0/2:|
(6) Ay = 3 [1‘ + T sin 10/2 ]0/2— .

Finally we have the fact that the intrablock estimates are obtainable from

o) _ Q
@ (6)=<():
and the variance-covariance matrix of the #,,’s is ¢°C.

4. The Efficiency of the Designs. The standard measure of the efficiency of
an incomplete block design is the mean variance of treatment differences in
terms of o°, the error variance, divided into 2¢°/r, where r is the number of times
each treatment is replicated.

In the present case

Var (#; — #;) = o*(cs; + ¢yry — 2cjjr)

]

26%(cji — cir).
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Summing these variances over all n(n — 1)/2 possible differences, and utilizing
the fact that the relevant part of C is a circulant, we get as the mean variance
of a treatment difference:

2 .
20'2 LCu - m {(’n - I)Clz + (n - 2)013 + -+ Cln}]
=202_c ——2~—-{nc + nei + - 4+ ne }}
i n an — 1) 12 13 1(n41)/25 |
if n is odd
[ n
= 24 LCu - n(—n-:T){nCm + neis + nei, @ + 5 Clv(n/2)+l}:| )

if n is even. In either case it can be seen that the mean variance reduces to
2¢%u(n/n — 1). We may note that ¢y is in fact equal to one-nth of the sum of the
reciprocals of the non-zero latent roots of A. A simple mathematical expression
for this sum has not been obtained. Finally the efficiency factor of the designs is
equal to (n — 1)/nrey . Since the design is completely specified by n and r or s
we have computed Table 1, which gives the efficiency factors for a range of
values of n and r.

5. The Utilization of Inter-block Information. As with all classes of incomplete
block design, the information contained on treatment comparisons in block
comparisons must be considered. Whether it is actually worth incorporating
with the intrablock information depends on the extent to which the grouping
of the experimental units into blocks achieves a marked reduction in the error
mean square.

The usual basis for the utilization of the interblock information will be used,
namely that a block total, say, B; has an expected value

n
2 8T,
j=1

where 8;; = 1 if treatment j is in block : and equals O otherwise, and is dis-
tributed around this expected value with a variance of o1 , say. On the basis of
the model we are led to the reduced normal equations

. Y..
®) Z(Z 8: 55:") #po=285Yi — 1 5
i’ i 1
where b is the number of blocks.
Letting W = 1/¢* and W’ = 1/¢1 and combining these equations with equa-
tions (2) we get as the estimating equations in our particular case

w+wH), Ww-w) o wo. W( o Y..)
) r 2 Tj B} ]_Z,‘:jku'n'—WQ:-f-? T; T’T)_‘a

j= 1727"';”7
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where T'; is the total of the blocks containing treatment j. (See [2], p. 545, equa-
tion 15, for example).

TABLE 1
Efficiency Factor of Designs
Number of Number of Replicates
treatments |
——-I 2 3 4 5 I 6 7 8 9 10
6 { — 832 | — .600 | — —_ — — —_
7 375 — 542 | — 583 | — — — —
8 — 487 | — 543 | — .571 — — —
9 300 | — 510} — v 5420 — .562 | — —_
10 — 435 | — 517 ¢ — .540 | — .556 | —
11 .250 | — .486 | — .521 —_ 537 | — .550
12 — 395 | — .501 — 522 | — .536 | —
13 214 | — .458 | — .508 | — .524 | — .535
14 — .360 | — .487 | — 812 | — | NC —
15 187 1 — 433 | — 498 | — | NC — | NC
20 — 284 | — 437 | — .489 | — | NC —
30 — 210 0 — 372 — .447 | — ' NC —

— means design not possible, NC means not computed.

The matrix of the coefficients is again a circulant so that the solution can be
written out from the previous sections. The nonzero roots of the matrix are

Ny = r(W + W) + (W — W’) sin (n. - r)j0/2
2 2 sinj6/2
= (W — W)\ + rW'.
The solution of the normal equations is therefore given by
(10) 7 = C*R,

. . * * *
where C* is the circulant [¢f1, ¢12, -+, ¢14), and

o = licos(k—l)(j— 1)0.

n k=2 N

In just the same way as before we find that the variance of the estimated dif-
ference between treatments ¢ and j is

(11) 2(chi — %)
which is equal to

2(01‘1 - C;k,(j-i}+l)
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where {j — ¢} = (j — ¢) mod n. Similarly the mean variance of all treatment
differences is (2n/n — 1)ciy .

6. The Estimation of the Weights, W and W’. In order to utilize the inter-
block information it is necessary to follow the usual device of estimating the
weights W and W’ for use in the estimating equations.

The analysis of variance which must be computed to estimate W’ is given in
Table 2,

TABLE 2
Analyses of Variance of Design
df % | B df
w | 9
Blocks ignoring
treatments.| (nr/2) — 1 B |T |n-1 Treatments
ignoring
blocks
Treatments
eliminat-
ing blocks..| n — 1 T | B | (n/2) — 1 Blocks elimi-
nating
treatments
Error.......... n(r/2—1)4+1|8z| S| n(r/2 —1) + 1| Error
Total........ nr — 1 !S S |nr—1

where B is one half the sum of squares of block totals minus correction,

T =23 #Q;,
the #’s being given by equation (7), T is 1/r times the sum of squares of treat-
ment totals minus correction, § = D_y%, minus correction, correction = Y y%;/nr

and Sg and B’ are obtained by subtraction.
If we write o7 = o° + 203 , it may be verified that

E(Sp) = [n (% - 1) + 1] &,

and that
EB) = <n£ — l> o + n(r — 1)0%,
so that
’ 2(n — 2)8Sg _ . 2 5 2
E{2B - m—+—2} = n(7 1)((7 + ..vO'b).
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We may therefore estimate W and W’ by

w=|:n<§—-1>+1:]/83

o = n(r — 1)
2B, _ 2Sg(n - 2) :
nr —2n 4+ 2

These values are then used in the estimating equations (10).

7. Relation of Designs to Partially Balanced Incomplete Block Designs. The
class of partially balanced incomplete block designs evolved by Bose and Nair
[3] and later extended by Nair and Rao [5] has been found to contain many
designs developed other than from the specifications of the class. It is clear
(from for example [1], pp. 546-548) that this class of designs corresponds to a
particular form of the reduced normal equations for the treatment constants
(7). If corresponding to any one treatment j the remaining treatments (') can
be divided into classes, say SjuSj2, - -+ S;m within which A;;» is constant, then
the following must hold. Let G be the sum of the 7’s for the treatments in Sj ;
then the sum of the normal equations for the treatments in S; must give an
equation in the Gj’s, the coefficients of which do not depend on the particular
treatment j originally taken.

From this point of view it is easily seen that the class of designs given in this
paper belong to the class of partially balanced incomplete block designs. The
classes S); are as follows: Sy, consists of treatments 2 and n, S;; of treatments 3
and n — 1 and so on. If n is even, there are n/2 + 1 classes, the class Si,»/241
consisting of treatment (n/2 + 1). If n is odd thereare (n — 1)/2 classes each con-
taining 2 treatments. The associate classes for the other treatments are defined
in a circular way, Su consisting for example of treatments 3 and 1, Sy of 4 and
n, and so on. The representation of the class of designs given herein as partially
balanced incomplete block designs is, however, of little value, because the num-
ber of associate classes depends on the number of treatments and may be large,
and because all analyses of partially balanced incomplete block designs have
been worked out in terms of the number of associate classes. The accuracies of
comparisons between treatments in the same or different associate classes is
given by (11).
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