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A CLASS OF MINIMAX TESTS FOR ONE-SIDED COMPOSITE
HYPOTHESES'

By S. G. ALLEN, JE.
Stanford University

Summary. Fixed sample-size procedures are considered for testing a one-sided
composite hypothesis concerning a real, one-dimensional parameter of an ex-
ponential distribution (1.1). In particular, conditions are studied such that the
minimax tests have a critical region which is a semi-infinite interval on the real

line.

1. Statement of the problem. Let X be a real-valued, one-dimensional ran-
dom variable with the probability density

(1.1) p(z, 0) = w(@)(x)e™,
where
(1.2) w(8) = [ f_ : y(x) dx]fl

is a positive, bounded, continuous function of the real variable 8 and where ¢(x)
is a continuous, nonnegative function of the real variable z. Let X;, X., - -+, X,
denote n independent observations on X, and let 7(X,;, ---, X,) denote a
fixed sample-size procedure based on the n observations for testing the com-
posite hypothesis § > 6, against the alternative 8§ < 6, . The loss functions are
defined as follows: if the hypothesis is rejected, the loss is w;(8) = 0 for 8 > 6,
and w,() = 0 otherwise; if the hypothesis is accepted, the loss is w2(8) = 0
for 8 < 6, and w.(8) = O otherwise. Furthermore, it is assumed that the func-
tion wy(6) is actually positive for at least one value of 8 > 6, and w,(6) is posi-
tive for at least one value of < 6, . The problem to be considered is the selection
of a minimax test procedure T'(X,, ---, X,) under these conditions.

2. A class of minimax tests. For testing the simple hypothesis 8§ = 6, in (1.1)

Received 11/5/51, revised 11/2/52.

1 This paper, representing work done under the sponsorship of the Office of Naval Re-
search, was presented at the Western meetings of the Institute of Mathematical Statistics,
June 15-16, 1951, Santa Monica, California. Discussion with members of the Department of
Statistics, Stanford University, in particular with Professor M. A. Girshick, was most
beneficial in the formulation of the present draft of the paper. The author understands that
results similar to those of the present paper were obtained for the sequential case by Milton
Sobel in his doctoral thesis, ‘‘An essentially complete class of decision functions for certain
§tandard sequential problems.”
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against the simple alternative § = 6, with 6, < 6, , the minimax procedure based
on n independent observations on X is well known [1]. The value of the statistic

p(xt ) 02)
(2.1) = M6y, 6) = I=Il p(z: , 61)

is computed from the observed values of X in the sample. The hypothesis is
then accepted if A > ¢ and rejected if A = ¢, where the-criterion ¢ satisfies

(2.2) wi(02)Pr(\ < ¢ | 6;) = wa(6,))Pr(A > ¢ | 6y).
This value of ¢ is

- wa(0,)g
wi(62)(1 — g)’

where ¢ is the least favorable a priori probability that § = 6, .

From the form of the density function (1.1), it is clear that an identical
procedure to the preceding ratio test specifies acceptance of the hypothesis if
and only if D %qx; > k, where

(2.3)

y _ 1 (.0(01) "
(2.4) k= 62—-—-——__01 log [ [(—0—(6;5] .

Since the probability density of the statistic D iy; is again of the form (1.1)
(see Section 4 of [2]), the discussion of tests like the above is not restricted by
an assumption that the sample consists of a single observation on X. There-
fore, the number % defined in (2.4) may be determined by a condition equivalent
to (2.2) withn = 1, namely,

Let Tw(X) denote a test procedure specifying acceptance of the hypothesis
8 > 6, if the observed value of X exceeds k, and specifying rejection otherwise.
One might ask if such test procedures, which form a class of minimax procedures
in the case of the simple dichotomy, retain this property in the more general
problem of Section 1. If so, does a condition similar to (2.5) determine the
minimax test?

The following theorem supplies an answer.”

THEOREM 1. Let

(2.6) Rl ) = w0 [ (o) s, 02 6,

@7) Ru(k, ) = w6) fk " (O @) da, 6 < 6.

2 The motivating idea for Theorem 1 was a lot acceptance sampling procedure proposed
in an unpublished paper by Mr. Norman Rudy of Sacramento State College.
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Then Tw(X) is minimazx if

(2.8) max Ry(k, 0) = max Ry(k, ).
60200

Proor. Let R(T, G) denote the expected loss of a test T' with respect to the
a priori distribution with cdf G(8). In particular, for a ko satisfying (2.8),

0 0o
zmwm=fmmwmmmj:mmmmm

2.9) < ma,x Ry(kq , 0) dG(6) + [ " max Ry(ko , 6) dG(6)

0o 02
= max Ri(ko, 0) = max Ro(ko , 6).

0200

Let 6, , 6, be values of 6 such that 6, < 6, < 6, and

(2.10) :H%X Ry(ko , 6) = Ry(ko , 6s),
200

(2.11) max Rz(k‘o y 0) = Rg(k‘o N 01).
0<6y

If G is a distribution concentrating all probability at 6; and 8, , then the equality
sign holds throughout (2.9). Therefore

(2.12) max R(T:,, G) = max Ri(ky, 0) = max Ry(ko, 6).
q 0200 0<6p
In particular let Gy be the distribution given by ¢ = Pr(6 = 6,),1 — ¢ =
Pr(8 = 6,), where g satisfies

_ 1 w2(6:)gw(6;)
=56 EnE)( — 9wl

Clearly T}, is the Bayes procedure against G, . (Compare ¢ in (2.3) and (2.4).)
Hence

ko

min B(T, Go) = R(T4, , Go) = max R(T,, , @).
T [¢]
Application of the saddle-point theorem of [3] completes the proof.

3. An example based on the normal distribution. Suppose it is desired to test
the hypothesis that 6, the mean of a normal distribution with variance one, is
positive against the alternative that it is negative, where w,(6) = 6 for § = 0
and wy(§) = —6 for 8 < 0. The functions defined in (2.6) and (2.7) are

k-0 0 —lu’
Rl(k, 0) = ['” E dy, 0=0
—k+0 9
Ralk, 6) = f \/— ey = [ - eMay, 00
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Since Ry(k, —| 0]) = Ri(—Fk, | 0]), it follows that maxs<o R2(0, 8) = maxs>o
Ry(0, 6), provided the latter exist. This is certainly the case, since, by L’'Hospital’s
rule,

02 2
lim Ry(0, §) = lim —=¢*" = 0.
lim (0, 6) lim 7= ¢ 0

4. Remarks on the discrete case. The continuous distributions studied in the
preceding sections represent a sub-family of a more general family of distribu-
tions of the form w(8)e”d¥ (x), where ¥ is a measure ou the real numbers and

where
w(d) = [ [: ¢ d‘I'(x):I_I\

is a positive bounded function of the real variable 6. This family includes many
of the most important distributions encountered in statistics, such as the normal,
x’, binomial, negative binomial, and Poisson distributions.

Suppose the distribution under consideration in this family is a discrete
one, and suppose that ¥(x) dssumes jumps at each value of a denumerable,
ordered sequence (z;1, %2, :--). For example, if X is the number of successes
in n Bernoulli trials, the function ¥(z) assumes jumps at « = 0, 1, 2, --- , n.
In general, it will not be possible to find a value of £ in such a sequence so that
condition (2.8) is fulfilled. However, a randomized mixture of two procedures
Ty and Ty will be a minimax procedure if there exists a pair (k, k&’) such that

max R;(k’, 6) < max Ry(k', 6),
[]

0=00 0<0
max Ry(k, 8) > max R.(k, 6),
0200 0<6p

where &’ is the next smaller element than k in the sequence (z1, z», --+). In
this event, the minimax test procedure consists of the following: reject the
hypothesis 8 > 6, if © < k; accept the hypothesis if > k; if £ = k, accept the
hypothesis with probability f and reject with probability 1 — f, where f satisfies

‘I,I:%X [le(k', 0+ (1 - NRy(k, 0] = I}iaéx [fRz(k,, 0+ (1 — f)Rz(k; 0)l.
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