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POWER FUNCTIONS OF THE ‘SIGN TEST AND POWER EFFICIENCY
FOR NORMAL ALTERNATIVES!

By W. J. Dixon

University of Oregon
1. Summary. Power functions are tabulated for the sign test for various
sample sizes and « near .05 and .01. Several of these power functions are com-
pared with the power function of the ¢-test for samples from normal populations
by means of a power efficiency function. The results indicate decreasing power
efficiency for increasing sample size, for increasing level of significance and for
increasing alternative.

2. Power function. The power of the two-sided sign test for level of significance,
a, is given by:

M ao = 3 (V) — 9+ o -
where 7 is the largest integer such that
) > (V) a2 = /2

and N is considered fixed [5]. Here, p is the alternative population proportion.
Values for A\(p) may be obtained readily from a table of the cumulative binomial
[1] or tables of the incomplete beta function [2] since

Z‘B (JJV) /1 = 2)V = LN — 4,4+ 1).

=
Beyond the range of these tables the approximation of Camp [3] can be used
with great accuracy. The maximum ¢ which satisfies (2) is tabulated as r in
Table I of reference [5] for « = .01 and @ = .05. Tables I and II of this paper
give the power for these critical values. Since p = .50 is the null hypothesis,
the values in the column headed p = .50 in Tables I and II of this paper give
the actual level of significance (<.01 or <.05) of each test. At the foot of the
tables are the normal alternatives corresponding to the alternative p, that is,
4 is defined by the relation 1 — F(3) = p where F(z) is the cumulative zero mean
unit variance normal distribution. For normal alternatives Tables I and II may
be entered either with p c: 8. For nonnormal alternatives the tables must, of

course, be entered with p.

]
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TABLE 1
Power for Sign Test (a < 05)
Brveeeaneiinaien, so | as [ 40 | 35, | 30 | .2 20 [ 15 10 05
R 55| 6o | et | 0 | s 0 8 % 95

N r

5) (0) |.06250].06878|.08800 .12128 .17050|.23828| .32800 | .44378 | .59050 | .77378

6 0 (.03125].03598.05075/.07726|.11838|.17822| .26221 | .37716 | .53144 | .73509

7 0 1.01562.01896].02963|.04967(.08257|.13354| .20973 | .32058 | .47830 | .69834

8 0 .00781|.01005|.01745(.03209{.05771|.10013| .16777 I .27249 | .43047 | .66342

9 1 |.03906(.04760|.07435|.12248|.19644|.30045{ .43623 | .59948 | .77484 | .92879
10 1 1.02148|.02776].04804|.08649|.14945|. 24405| .37581 | .54430 | .73610 | .91386
(10) | (2) |.10938|.12695|.17958|.26643|.38437|.52601| .67788 | .82021 | .92981 | .98850
11 1 ].01172).01614{.03097|.06079|.11304).19711| .32212 | .49219 | .69736 | .89811
12 2 1.03857].05002|.08625).15214|.25302|.39071| .55835 | .73582 | .88913 | .98043
13 2 ].02246|.03105].05922.11354(.20255|.33261} .50165 | .69196 | .86612 | .97549
14 2 |.01294].01916|.04040{.08407(.16086|.28113| .44805 | .64791 | .84164 | .96995
15 3 1.03516].04875|.09243(.17318|.29696.46130| .64816 | .82266 | .94444 | .99453
16 3 |.02127].03158|.06609|.13406/.24589|.40499| .59813 | .78989 | .93159 | .99300
17 4 |.04904].06820|.12852(.23542|.38879|.57390| .75822 | .90129 | .97786 | .99884
18 4 1.03088).04598|.09545|.18888|.33269|.51867| .71635 | .87944 | .97181 | .99845
19 4 1.01921].03074(.07025|.15011|.28224|.46543| .67329 | .85556 | .96481 | .99799

(20) | (4) |.01182).02039|.05127|.11825{.23751(.41484| .62065 | .82085 | .95683 | .99743
20 5 [.04139(.06177(.12721|.24571).41641|.61718| .80421 | .93269 | .98875 | .99967
(20) | (6) |.11532|.15135(.25648|.41815(.60827|.78581| .91331 | .97806 | .99761 | .99997
25 7 ].04329(.06968|.15476/.30626|.51187|.72651| .89088 | .97453 | .99774 | .99998

30 9 |.04277|.07442(.17714|.35764|.58882(.80341| .93891 | .99034 | .99955 ;1.00000-
35 11 |.04096(.07712|.19577|.40198|.65156( 85789| .96564 | .99633 | .99991 |1.00000-
40 13 |.03848(.07848|.21156|.44079|.70325(.89776| .98059 | .99860 | .99998 |1.00000-
45 15 |.03570(.07894|.22517|.47519|.74622(.92470| .98900 | .99946 (1.00000~
50 17 |.03284(.07877|.23706|.50598|.78219|.94488| .99374 | .99980 |1.00000~

60 20 |.02734].07722|.25689|.55903|.83818|.97020] .99796 | .99997 |1.00000~

70 26 |.04139].11635|.36009|.69503|.92220|.99163| .99974 |1 00000-
80 30. 1.03299].10895|.36877|.72353|.94125{.99542( .99991 |1.00000-
90 356 |.04460].14612|.46008].81223].97256].99878|1.00000—

100 39 |.03520|.13519].46206|.82758|.97900|.99932(1.00000-

Normal alter-

natives
P, 0 |.1257 |.2534 |.3853 |.5244 |.6745 | .8416 |1.0364 |1.2816 |1.6449
V2s..... | 0 |[.1777 |.3583 |.5449 (.7416 [.9539 {1.1902 '|1.4657 (1.8124 |2.3262

3. Power efficiency. Discussigh of the power of the sign test for normal alterna-
tives was given in [4] for large N. This paper obtains 100 (2/x) = 63.7 per cent
as the efficiency. Reference [5], by a rough coincidence of the power function of
the sign test for a sample of N observations with the power function of the ¢-test
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for some smaller sample size obtained ratios of sample sizes of .67 for N = 18
and .65 for N = 44. This ratio of sample sizes is defined to be power efficiency
by Walsh [12]. He defines as equivalent power curves those whose average height
is the same. For finite N an essential difficulty arises, since the power curves

TABLE 11
Power for Sign Test (« £ .01)

.35

.20

A5

05

Do, .50 45 40 .30 .25 .
.55 .60 .65 .70 75 .80 .85 90 .95

N r
8 0 |.00781|.01005!.01745'.03209:.05771|.10013| .16777 | .27249 | .43047 | .66342
9 0 [.00391:.00536|.01034(.02079|.04037|.07509| .13422 | .23162 | .38742 | .63025
10 0 |.00195|.00287,.00615/.01349|.02825(.05631| .10737 | .19687 | .34868 | .59874
11 0 (.00098|.00155/.00367|.00876|.01978|.04224| .08590 | .16734 | .31381 | .56880
12 1 |.00635|.00937|.01991|.04252(.08504/.15838| .27488 | .44346 | .65900 | .88164
13 1 |.00342|.00543.01276!.02961|.06367|.12671| .23365 | .39828 | .62135 | .86458
14 1 |.00183|.00314|.00816|.02053|.04748(.10097| .19791 | .35667 | .58463 | .84701
15 2 1.00739(.01176|.02739|.06179|.12684|.23609| .39802 | .60423 | .81594 | .96380
16 2 |.00418/.00719|.01846|.04511(.09936|.19711| .35184 | .56138 | .78925 | .95706
17 2 |.00235|.00437|.01238|.03273|.07739|.16370| .30962 | .51976 | .76180 | .94975
18 3 1.00754!.01298|.03300|.07830|.16455|.30569| .50103 | .72024 | .90180 | .98913
19 3 |.00443].00825|.02306!.05915|.13317|.26309| .45509 | .68415 | .88500 | .98676
20 3 |.00258].00521|.01601|.04438|.10709|.22516| .41145 | .64773 | .86705 | .98410
25 5 1.00408|.00898|.02942|.08263(.19349|.37828 .61669 | .83848 | .96660 | .99879
30 7 |.00522|.01253].04357|.12377|.28138|.51429| .76079 | .93022 | .99222 | .99992
35 9 |.00599|.01565|.05757|.16510|.36458|.62632| .85427 | .97082 | .99826 | .99999
40 11 |.00643|.01829|.07098|.20528|.44061|.71514| .91249 | .98803 | .99962 |1.00000-
45 13 |.00661|.02048|.08365|.24370|.50875(.78408| .94793 | .99515 | .99992 (1.00000-
50 15 |.00660|.02226|.09552|.28010|.56918|.83692| .96920 | .99805 | .99998 |1.00000-
-60 19 |.00622|.02483|.11697|.34678|.66916|.90752| .98933 | .99969 |1.00000~

70 23 |.00558.02637|.13568|.40577|.74592|.94774| .99633 | .99995 |1.00000-

80 28 |.00968|.04485(.21312(.55120|.86331|.98337| .99945 (1.00000-

90 32 [.00743|.04566!.22674(.59138|.89569|.99075| .99982 (1.00000-

100 36 |.00664|.04300|.23868|.62692.92011.99482| .99994 |1.00000—

Normal alter-
natives

& ... 0 |[.1257 |.2534 |.3853 |.5244 |.6745 | .8416 |1.0364 [1.2816 |1.6449
V26, 0 |.1777 |.3583 |.5449 |.7416 |.9539 |1.1902 (1.4657 [1.8124 '2.3262

differ in shape. The equivalence “‘by sight” or by an averaging process disguises
these differences in shape. It would seem more realistic to define a power effictency
function which gives the power efficiency for each alternative. This function
has been obtained for the sign test for N = 5, 10, 20 and is given in Fig. 1. The
power function of the test was compared for a corresponding to particular exact
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values of « for the sign test. These curves show decreasing power efficiency for
increasing N, for increasing «, and for increasing alternative. The alternative,
3, is a shift in mean in standard deviation units of observation differences. For
samples from two normal populations with means y; and u; and standard devia-
tions both equal to ¢ we have \/2 6 = | ;1 — p2 | /o. Limiting power efficiencies
for large & were computed for the curves graphed. The alternatives correspond-
ing to power equal .50, .90 and .99 are indicated on each curve. Table III lists
the power efficiency for the cases studied and the power functions for the sign
test are in Tables I and II. Cases used in this comparison but not satisfying the

TABLE III
Power Efficiency of the Sign Test

Alternatives | N=5 10 10 10 20 20 20
p 5 | a=.062 .0020 .0215 .1094 L0118 0414 .1153
.50 0 96.0 94.0 8.0 76.8 76.3 72.9 69.9
.45 .1257 96.0 93.7 84.9 76.8 76.1 72.7 69.8
.40 .2534 96.0 93.3 84.7 76.7 75.7 72.5 69.6
.35 .3853 96.0 92.8 84.5 76.5 75.3 72.1 69.3
.30 .5244 95.8 92.1 84.0 76.1 74.8 71.6 68.8
.25 .6745 95.5 91.5 83.4 75.6 74.1 71.0 68.3
.20 .8416 95.2 90.6 82.7 74.9 73.4 70.3 67.7
.15 1.0364 94.7 89.6 81.8 74.1 72.5 69.5 66.9
.10 1.2816 93.9 88.2 80.6 72.9 71.2 68.3
.05 1.6449 92.8 86.2 78.9 71.2 69.5 67.8
.03 1.8808 92.0 84.8 77.6 70.2
.01 2.3263 90.6 82.4 75.6
.005 2.5758 89.9 81.1
.001 3.0902 88.5 78.7 .

0 o 80.6 58.5 56.2 52.3 54.2 52.7 51.5

requirement of largest « < .01 or < .05 are indicated by parentheses in Table I.
Additional powers not tabulated there are:

N ‘ ro p = .03 .01 .005 .001
5 ' 0! .85873 .95099 .97525 .99501
10 0 | 73742 .90438 .95111 .99005
10 ; 1 .96549 .99573 .99890 .99996
10 | 2 .99724 .99989 .99999

» Examination of the efficiencies stated by Walsh in [9], [12], [13] confirm the state-
ment of Jeeves and Richards [7] that the approximation used by Walsh would
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consistently overestimate the true efficiency. This effect is large only for small
sample sizes. For example, Walsh gives 96 per cent efficiency for N = 5 and
reference to Table III shows this to be the highest point on the curve. On the
other hand, the value of .7 efficienc{ for @ = .05 given by Jeeves and Richards
for N = 6 to 20 is quite reasonable for N = 20 but seems too low for N = 6 to
10. Jeeves and Richards use a randomized test, and since the efficiency depends
greatly on the level of significance comparisons are difficult.

4. Computation of power efficiency function. The power function of the ¢-test
was computed for several degrees of freedom at levels of significance correspond-
ing to those of the sign test. Computatign was effected using the formulas of
Nicholson [8]. Interpolation for fractional degrees of freedom of the ¢-test giving
equivalent power to the sign test was made on z-scores (normal deviates). This
procedure was followed since the power curves of the {-test are representable
approximately as normal cumulative curves. In most cases linear interpolation
proved to be satisfactory. However, this method was not satisfactory for é near
zero. Since the power curves for the sign and {-test agree in magnitude and slope
at § = 0 the limiting power efficiency may be obtained by interpolating among
the second derivatives of the power funetions. The second derivative for the
sign test at & = 0, sample size N and critical value r./ is

= ;’0 (N) [(2c — N)* — NI.

z
The second derivative for the {-test for » degrees of freedom and critical value
tase is

2 + 1) | tase | /2
B(1/2, V/2)(y + tzam)l/z(H.l) .

The limiting efficiency for 8 = 0 as N becomes infinite can also be obtained from
these derivatives and the result 2/« agrees with the value obtained by Cochran
[4].

This limit is the same for arbitrary fixed o and it appears that the limiting
power efficiency curve for large N and fixed § approaches zero for increasing é.
No proof of this statement was obtained. However, it is not inconsistent with the
statement of Walsh [10], [11] that the sign test and the ¢-test have the same power
function asymptotically when sample sizes are in ratio 2/.

The values indicated for limiting power efficiency for large § represent ratios
of sample sizes similar to those for finite 6. Nicholson [8] gives an expression for
the power of the ¢-test with » degrees of freedom. The leading term for large & is

v—#
1— (_:) \/Ezv—'z o222

2

where z = 6v/5(1 — z,) and z, satisfies



ADMISSIBILITY OF TESTS 473

1 1
B(L l) f (1 - )" dp =
2 ) 2 Za

Using the approximation of ordinate over abscissa for the cumulative normal
for extreme abscissa we find that z is the abscissa of a cumulative normal which
is approximately equal to the power of the {-test for alternative §. In a similar
manner the normal approximation to the binomial yields z = 54/r + 1 for the
sign test. A fixed value of N and « determines r, o, 2, and we may solve for ».
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—
THE ADMISSIBILITY OF CERTAIN INVARIANT STATISTICAL
TESTS INVOLVING A TRANSLATION PARAMETER
‘ By E. L. LeamMann' anp C. M. STEIN
University of California, Berkeley, and University of Chicago

1. Introduction. The notion of invariance (or symmetry) has such strong
intuitive appeal that many current statistical procedures have the invariance
property and are in fact the best invariant procedures although they were pro-
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