A DOUBLE SAMPLE TEST PROCEDURE!
By DpnaLp B. OweN

Purdue University

1. Summary and introduction. Three different testing procedures which
involve a minimum of modification of the usual single sample tests of the hypo-
theses considered are given here. Tests are made by taking samples at two
stages for testing the mean of a normal distribution. A known standard devia-
tion is assumed, but an extension to the case where the standard deviation is
unknown is also given. Special examples show that tests can be chosen so that
the expected number of observations is less than the number required for the
ordinary single sample test and indeed can give considerable savings. The tests
in Sections 3 and 4 give the greater savings, but the powers are more difficult
to evaluate than the power for the test of Section 2. Also, it is a little more
work to apply the test in Section 4. Wald in [9] has discussed a sequential test
where the observations are taken in groups. The tests given here could be con-
sidered very special cases of this where the number of observations is truncated
after two groups. Romig in [7] has set up a double sampling procedure for sam-
pling from a finite population that is approximately normal where the rejection
points are determined by preassigned engineering or specifications limits and not
by the normal distribution itself as is done for the first sample of the double
sample tests given below. Bowker and Goode in [1] give tests similar to those
given by Romig. Chapman in [2] and Stein in [8] have discussed two sample
tests where the object is to obtain tests with the power independent of an un-
known variance and where there is no upper limit on the number of observations
required. There is a definite ceiling on the number of observations required for
the tests presented here and they have many interesting properties that make
them very desirable from the standpoint of saving of observations and sim-
plicity.

2. First test procedure. A double sample test for the hypothesis H:m = mq
against H:m < mo where m is the mean of a normal random variable, X, with
known standard deviation, ¢, will be constructed. Extensions to tests of other
hypotheses will be clearly possible. Assume that the number of observations, n,
of a single sample test has been determined in accordance with the methods
mentioned in [3] so as to have a given probability of Type II error for m = m,

where m; < m, . Let G(z) = (21r)" [ ¢ 1" dt and let h be defined by G(—h) =
a < 1. Let m be the number of observations in the first sample of the double
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sample test where n1 < n. Let p = n;/n and let 8 be a positive constant defined
by equation (1) below.

For the double sample test, n; observations, z; , - -- , Za,, are taken and
I = Zf;‘l zi/ny and wy = /0y (% — me)/o are computed. If v, < —/ph — 6
reject I1; if uy > —~/ph + 6 accept H; andif —+/ph — § < w, < —/ph + 6
take n additional observations.

For my + n observations, & = Y .rt4",z./n and w2 = V/; n(E — mo)/o
are computed. If u, £ —h reject H and if u, > —h accept H.

The Type I error of the double sample test is equal to
G(=V'ph = 6) + o[l — G(—V/ph — 0) — G(\/Ph — 0)].
If the Type I error of the double sample test is to be equal to «, then
1 a (1 = &)G(~/ph — 6) = G(\/ph — 6)

holds, which is the equation that defines #.

Tueorem 2.1. For each given p and o« there exists one and only one 6 which
satisfies equation (1).

Proor. Set ¥ = a”'(1 — a)G(—+/ph — 0) — G(\/ph — 8) Then to show
that Y has only one positive zero, note that

dy — _1__: 64(@}:—0)![1 _ 1= ae—z\/mo]
do \V2r a
and hence that Y is positive decreasing at 8 = 0, and negative increasing as 6
approaches infinity. Since Y has only one critical point, ¥ has only one zero.
The power of the double sample test is given by

G(=Vph — 6 + Vpw) + [G(=h + w)][l — G(—V/ph — 6 + /pw)

— G(Vph — 6 — V/pw)]
where w = \/n(my — m)/a. Define
¢w) = [1 — G(—h + w)G(=VPh — 0 + Vpw)] — [G(—h + w)]

[G(VPh — 6 — /pw));

that is, ¢(w) is equal to the power of the double sample test minus the power of
the single sample test based on n observations.

THEOREM 2.2. The function, ¢(w), has the following zeros: w = — o, w = 0,
w=nhw=2handw = + oo,

Proor. Substitution in ¢(w) verifies the theorem if equation (1) is kept in
mind for w = 0 and w = 2h. Note that uniqueness is not claimed although this
is apparently the case.

TrEOREM 2.3. If w = u + h, then ¢(u + h) = —¢(—u + h). 5

PrOOF. ¢(u + h) = [l — GW)[G(—6 + Vpu)] — [GWG(—6 — V'pu)),
and since G(—u) = 1 — Qu), ¢(u + h) = [G(—w]G(—0 + 'pu)] —
1 — G(=WIG(—0 — Vpw)] = —¢(—u + h).
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It is convenient now to define
Rw) = G(—V/ph — 6 + Vpw) + G(v/ph — 6 — \/pw),

that is, B(w) is the sum of the probability of rejecting H and the probability of
accepting H at the first step of the double sample test. The expected number
of observations, which is discussed below, is a function of R(w).

TaEorREM 2.4. The function, R(w), has a mintmum with respect to w when w =
h and R(w) is a decreasing function for w < h and an increasing function of w for
w > h.

Proor. This follows immediately from the derivatives of R(w).

THEOREM 2.5. The power of the double sample test is an increasing function of w.

Proor. The power is-an increasing function up to w = h since the power is
equal to G(—Vph — 6 4+ Vpw) 4+ G(—=h + w)l — R(w)] and
G(—+/ph — 6 + \/pw) and G(—h + w) are increasing functions of w and
R(w) is a nonincreasing function up to w = h by Theorem 2.4. But if w = u + h,
this means that G(—w) + ¢(—u + h) is a decreasing function of u for all posi-
tive u. Hence the power which is equal to ¢(uv 4+ h) + G(u), which is equal to
1 — ¢(—u + h) — G(—w) by Theorem 2.3, is an increasing function for all u
and hence for all w.

TaEOREM 2.6. The function, ¢(w), is an increasing function of w ol w = h,
provided p = (2r)™" and h = 0.468.

OUTLINE oF ProoF. (dp/dw)s = (27)[\/pe ™ — 2Q(—0)]. To show that
(d¢/dw)y is positive for p = (2r)™" and h = 0.468 show that it is positive for
p = (2x)7", positive decreasing as p — 1, and has only one critical point for
(2r)™ < p < 1. It is easy to show that (d¢/dw)s — O through positive values
as p — 1 by consideration of the derivatives of v/p ¢ *** and 2G(—6) asp — 1.
Next it can be shown that there exists one and only one value of z = 6+/p which
corresponds to any critical points of (d¢/dw)s . Then for all p > (2x)~" there ex-
ists one and only one p which will give any particular value of z = 6+/p. Next
it can be shown that for p = (2r)™ and 6 = 1.572 (d¢/dw)s is positive, and
then for all A = 0.468 and p = (2x)”, 8 = 1.572,

From the foregoing theorems it appears that if A = 0.468and p = (27)7", the
power of the double sample test is less than that of the corresponding single
sample test based on n observations, G(—h + w), for 0 < w < hand w > 2h
and is greater for w < 0 and b < w < 2h. Since uniqueness of the zeros has not
been shown, ithis is, of course, conjecture, but Example 2.1 below shows that
this is true in case p = % and a = 0.05. This would make the double sample test
more desirable than the single sample test based on n observations if, as is fre-
quently the case, it is more important to reject less often for small values of w
or more often for large values of w. In the special examples that have been com-
puted ¢(w) has had consistently small values (less than 0.01 for w < 0
and w > 2h), that is, the discrepancy between the powers of the single and double
sample tests has been negligible in the tails.

The expected number of observations for the double sample test is given by
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E,(N) = n[l 4+ p — R(w)]. For a fixed p, E,(N) is a maximum when w = h
by Theorem 2.4. When the hypothesis H is true, the expected number of observa-
tions is Eo(N) = n[l 4+ p — o 'G(—+/ph — 6)]. The minimum of Eo(N) with
respect to p for @ = 0.01, @ = 0.05,and a = 0.10 is for p = 0.505, p = 0.524
and p = 0.5003, approximately, respectively.

TABLE 2.1
P } - Vph—6 | —Vph+6 ‘ 9 ! k | r
For o = 0.05
0.20 | —2.3006 +0.8293 1.5650 0.009118  —1.71
0.25 | —2.1331 +0.4882 1.3107 0.008988 —1.74
0.30 —2.0174 +0.2155 1.1165 0.008566 —1.80
0.40 | —1.8707 —0.2099 0.8304 0.007402 —1.88
0.50 { —1.7847 —0.5415 0.6216 0.006210 —1.96
0.60 | —1.7308 —0.8175 0.4566 0.005158 —-2.00
0.70 | —1.6956 —1.0569 0.3193 0.004277 —-2.05
0.75 | —1.6826 —1.1664 0.2581 0.003899 —2.06
0.80 | —1.6720 —1.2705 0.2007 .0.003557 —2.06
0.90 | —1.6559 —1.4651 | 0.0954 0.002972 —-2.01
For a = 0.01
0.20 | —2.8387 ‘ +0.7580 1.7984 0.0013253
0.25 | —2.6837 +0.3573 1.5205 0.0012304
0.30 | —2.5816 +0.0331 1.3073 0.0010936
0.40 | —2.4616 —0.4809 0.9903 0.0008073
0.50 | —2.3991 —0.8909 0.7541 0.0005710
0.60 i —~2.3651 —1.2388 0.5632 0.0003983
0.70 | —2.3461 —1.5466 0.3998 0.0002767
0.75 | —2.3400 —1.6891 0.3255 0.0002314
0.80 | —2.3356 —1.8258 0.2549 0.0001940
0.90 | —2.3296 —2.0842 0.1227 0.0001379

This test is:obviously not as efficient as it could be since when it is necessary to
take the second sample no use of the first sample is made in the second test.
Even so, Example 2.1 below shows that for p equal to one-half, the expected
number of observations is considerably less than the number required for the
single sample test based on n observations and the power has some desirable
properties over the power of the single sample test. In sections 3 and 4 the above
procedure is modified so that the test at the second stage makes use of the first
set, of observations.

Table 2.1 is a tabulation of the rejection and acceptance points for various
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values of p and & = 0.05 and 0.01, together with a tabulation of 6. The quantity,
k, is defined in Section 4. For a = 0.05, k£ has a maximum when p = 0.2090,
6 = 1.5129 and k = 0.009126. The quantity, =, is defined in Section 3.
ExampLe 2.1. If @ = 0.05 and,p = 3, then § = 0.6216. For purposes of com-
parison the powers of various single sample tests are listed in Table 2.2 beside
the power of the double sample test. The column headed power is the power of
the double sample test as outlined in this section. @, = G(—h + w) is the power
of a single sample test based on n observations. G; = G(—h 4 0.9828w) is the
power of a single sample test based on 0.9658n observations, that is, on the maxi-
mum expected number of observations of the double sample test.” Gz =
G(—h + 0.8700w) is the power of a single sample test based on 0.7569n observa-
tions, that is, on the expected number of observations of the double sample

TABLE 2.2
w E.(N) Power G, G, Gy ! G,
-2 0.5245n | 0.0007 | 0.0001 | 0.0002 | 0.0004 | 0.0010
-1 0.5995n | 0.0068 | 0.0041 | 0.0043 | 0.0060 | 0.0078
0 0.7569n | 0.0500" | 0.0500 | 0.0500 | 0.0500 | 0.0500
0.5 0.8493n | 0.1203 | 0.1261 | 0.1244 | 0.1132 | 0.1182
1 0.9252n | 0.2509 | 0.2595 | 0.2540 | 0.2192 | 0.2473
1.6449 0.9658% | 0.5000 | 0.5000 | 0.4887 | 0.4154 | 0.4887
2 0.9531n | 0.6449 | 0.6387 | 0.6258 | 0.5379 | 0.6208
3.2898 0.7569n | 0.9500 | 0.9500 | 0.9439 | 0.8882 | 0.8882
4 0.6372n | 0.9876 | 0.9907 | 0.9889 | 0.9668 | 0.9392
5 0.5386n | 0.9986 | 0.9996 | 0.9995 | 0.9966 | 0.9785

test when the hypothesis H is true. G5 = G[—h + 8(w)] gives the values of the
various single sample power curves based on the expected number of observa-
tions for the double sample test for the particular alternative at hand, that is,
§(w) = w w(N)/n, where E,(N) is the expected number of observations for
the double sample test. Note that the power of the double sample test is every-
where better than the power, G[—h + 8(w)]. Hence if power is lost for any alter-
native where w is positive it is not lost in greater measure than is caused by taking
fewer obsérvations on the average.

The choice of the rejection and acceptance intervals was an intuitive one in
the first place, and although investigation into the optimum such choice indicates
that the one that was made is probably the best that can be made from the stand-
point of minimum expected number of observations balanced against a uniformly
powerful test, no conelusive results have been obtained in this direction.

3. Second () test procedure. The first part of the tests in this and the follow-
ing section is the same as the test in Section 2. That is, n; observations are taken
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(m < n)and & = D2 rhx/m,p = m/n, and uy = V(& — mo)/o are
computed. If u;, < —+/ph — 0 reject H;if uy > —~/ph + 0 accept H; and if
—/ph — 0 £ wy £ —+/ph + 0 take n, additional observations, where n, =
n —mn. «

-For n observations in all Z, = D.r, x:/n, and u, = \V/n(& — mo)/c are
computed. If u, < r reject H, and if u, > r accept H, where 7 is determined
from the equation

1 ' T p—/Ph+6 ) uz _ 2\/1—"“) + ?)2
2rv1 — P [«; -[~¢zsh—o exp (_ 2(1 — p) ) du do
= o[l — G(—V/ph — 6) — G(+/ph — 0)]

since the joint distribution of the random variables {/; and U, is bivariate nor-
mal with zero means and unit variances and correlation equal to +/p. A similar
test procedure is given in [1]. The quantity, r, is tabulated for « = 0.05 in Table
2.1 and was obtained by interpolation in the bivariate normal table given in
[6]. For « = 0.01 and other significance levels, however, the tables given in
[6] are not extensive enough to obtain 7 for most values of p. Section 4 gives an
alternative procedure which can be used in this case.
The power of the test given in this section is equal to

G(=V/ph = 0+ Vo) + G [ [

—/ Ph—0+/ Pw
' — 27/ pw + o°
exp (— 2(1 — p) du dv)!

and may be obtained in many cases from the bivariate normal table given in [6].

The expected number of observations for this double sample test is given by
E,(N) = a1l — (1 — p)R(w)]. For a fixed p, E,(N) is a maximum when w = h
by Theorem 2.4. When the hypothesis H is true,

E(N) = nll — o7'(1 — p)G(—VPh — )}

The minimum of Ey(N) with respect to p for & = 0.01, 0.05, and 0.10 is approxi-
mately for p = 0.443, p = 0.457, and p = 0.46, respectively. The power and
expected number of observations for this test for @ = 0.05 and p = % are tabu-
lated in Table 4.1.

4. Third (J) test procedure. This test is primarily an alternative procedure in
case 7 cannot be obtained for the procedure in Section 3. At the first stage go
through the same steps outlined in Sections 2 and 3 and at the second stage take
Ny n—-—m addltlonal observations and for n observations in all compute

VB = Yhmnsi/ne, e = V(@ — mo)/o, i = G(w), j» = G(w), a
G’( Vph — 8),b = G(—/ph + 6), and ¢ = jijo , where the random varla.ble

Q has the distribution given by Theorem 4.1 below. Define k by Pr(Q £ k) =

o
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and reject H if ¢ < k and accept H if ¢ > k. If the size of the double sample
test is to be « as in Sections 2 and 3, Theorem 2.1 applies once more.

TeEOREM 4.1. The cumulative distribution function for the random variable,
Q, when a = J, = b is given by

q-(—lf-g?b_—————;)w frosgs<a
(2) Pr(Q=q) = e b — 1
g1 + ogb _—aogq) % srasgsb

Proor. The random variable, J., has the rectangular distribution over the
interval 0 to 1 and J, given J; has the rectangular distribution over the interval
a tob. If @ = JiJ:, the joint distribution of @ and J, is given by 1/(b — a)J,
where the region of definition is the trapezoid bounded by @ = 0, Q = J,,
Ji = a, and J; = b. Integrate out J; and then integrate again to obtain the
cumulative distribution function (2).

The power of this double sample test is given by

G(—\V'ph — 0 + \Vpw)
+ ¢*[1 — G(—V/ph — 6 + Vpw) — G(\V/ph — 6 — \/pw)]

where ¢* = Pr(Q < k given that the mean is m and a £ Ji £ b). An exact
formula for ¢* can be found using the same process as that used in Theorem 4.1,
but the result is complicated and is not practical to 'use in computations. A
lower bound for ¢* can be found as follows.

Let J; = G(U + Vpw), Ju = G(U: + V1 — pw),

a = G(—Vph — 0+ Vpw), ¥ = G(—Vph + 0 + V/pw),

and Q' = J3Js . When the mean is m, Q' has the same distribution as @, given
in Theorem 4.1, but with a and b replaced by a’ and b’, respectively. Determine
the pair of values of (U, , U,) that minimize the product J3J, such that J,J, = k
and —\V/ph — 0 £ U; £ —+/ph + 6 (not necessarily the same pair for each
w). Denote the minimum value of J3J4 by ki, . Then ¢* = Pr(Q’ < k), since
the hypothesis is always rejected if Q' < k., .

The expected number of observations for this test is the same as for the test
in Section 3 with the same maximum and minimum values.

ExampLE 4.1. If @« = 0.05 and p = %, 6 = 0.6216, 7 = —1.96, and k =
0.006210. For purposes of comparison in this case the powers of various single
sample tests and the expected number of observations for the  and J double
sample tests are listed in Table 4.1. The column headed L. B. Power J-Test
refers to the lower bound of the power of the double sample (J) test as outlined
in this section. G; = G(—h + w) is the power of a single sample test based on
n observations. G5 = G(—h + 0.8561w) is the power of a single sample test

vbased on 0.7329n observations, that is, on the maximum expected number of
observations of the double sample (J and 7) tests. G¢ = G(—h + 0.7927w) is
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the power of a single sample test based on 0.6284n observations, that is, on the
expected number of observations of the double sample tests when the hypothesis
H is true. Gy = G[—h + v(w)] gives the values of the various single sample
power curves based on the expected number of observations for the J and
double sample tests for the particular alternative at hand, that is, v(w) =
wA/E,(N)/n, and E,(N) is the expected number of observations for the J and =
double sample tests. Note that the power of both of the double sample tests is
everywhere better than G[—h + v(w)]. Hence, if power is lost using either of
the double sample tests for any alternative where w is positive, it is not lost in
greater measure than is caused by taking fewer observations on the average.

TABLE 4.1
w Eu(N) lf"T“;:: Power 6, G, G, G
J-Test
- 0.5498n | — | 0.0072 | 0.0041 | 0.0062 | 0.0074 | 0.0085

0.6284n | 0.050 | 0.0500 | 0.0500 | 0.0500 | 0.0500 | 0'.0500
0.6746n | 0.112 | 0.1104 | 0.1261 | 0.1118 | 0.1059 | 0.1086
0.7126n | 0.222 | 0.2136 | 0.2595 | 0.2151 | 0.1971 | 0.2117
0.7329n | 0.423 ' 0.4096 | 0.5000 | 0.4064 | 0.3666 | 0.4064
0.7265n | 0.555 | 0.5399 | 0.6387 | 0.5268 | 0.4763 | 0.5238
0.6556n | 0.857 | 0.8341 | 0.9123 | 0.8221 | 0.7683 | 0.7835
0.5686n | 0.977 | 0.9680 | 0.9907 | 0.9624 | 0.9365 | 0.9149
0.5193n — 1 0.9968 | 0.9996 | 0.9958 | 0.9898 | 0.9749

(3}

U QO N == OO
£
Ne]

6. Test of the Student hypothesis. A test of the hypothesis considered in
Section 2 when the standard deviation is unknown can be constructed by simply
making the probabilities of accepting and rejecting equal to the corresponding
probabilities given in Section 2. That is, let

1
1 P(q—;—) ¢ £\
S0 = VL @) L+5)
) 2

and let A and n be defined by S.,i(—=\) = G(=V/'ph — 6), Spa(—n) =
G(—+/ph + 6). Replace ¢”in the test procedure of Section 2 by the corresponding
unbiased estimates s; = X rk (2 — &)Y/ (ny — 1) and s§ = D2 MEN, (s — &)Y/
(n — 1). For n; observations reject H if u; < —\ and accept H if u; > —n. Take
n additional observations if —\ < w1y < —9. For n; 4+ n observations make
the usual test of size « using the last n observations only. For given n; , @ and
p, A and 9 can be obtained from [4]. The power of the test and the expected

number of observations can be easily computed from the tables given in [5].
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N

Tests similar to those given in Sections 3 and 4 can obviously be constructed
for the Student hypothesis. Extension to any other hypothesis can easily be
effected by assigning the probability of rejecting and the probability of accept-
ing equal to the corresponding pEobabilities obtained using the normal test, as
was done for the Student hypothesis above.

The author wishes to thank Professor Douglas G. Chapman of the Laboratory
of Statistical Research at the University of Washington for his helpful advice
during the preparation of this paper.
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