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Summary. In a recent paper [1] the authors began the study of the theory of
sequential decision functions for stochastic processes with a continuous time
parameter. This paper treated the standard problem of testing hypotheses, and
the advantage of being able to stop at an arbitrary time point (not necessarily
a multiple of some unit given in advance) was demonstrated in several cases,
notably in that of deciding between two Poisson processes. The optimal tests
were Wald probability ratio tests and thus truly sequential. In the present paper
we treat the problem of estimation, and study in detail the Poisson, Gamma,
Normal and Negative Binomial processes. It turns out for these processes that,
with a proper weight function, the minimax (sequential) rule reduces to a fixed-
time rule. Though we confine ourselves to point-estimation it is clear that similar
methods apply to interval estimation. It may also be remarked that the case
when the time-parameter is discrete need not be treated separately. For example,
as described in Section 6.1, the results of Sections 2 and 3 imply analogous results
in the case of discrete time, which in turn imply certain results proved in [3]
and (in the nonsequential case) in [2] by other methods. The treatment of some
other problems in estimation is discussed in Section 6. This paper may be read
independently of [1].

1. Preliminaries. Let X(t | v), ¢ = 0, w £ Q, be a family of stochastic processes
in time ¢ which depend on a parameter w. Let ¢(t), ¢ = 0, be a given cost function
which represents the cost to the statistician of observing the process up to time £.
For every w in @ and & in the terminal decision space D* let W (w, &) be the weight
function, that is, the loss involved in giving the estimate @ when w is the correct
value of the parameter. Let (7, §) be a pair of functionals of the sample function
z(t) into (0 £ T = «, D), where § depends on z(¢) only through its values for
0=t=TifT < » (if T = «,§is undefined, but in accordance with our as-
sumptions on c¢(¢) below we define the quantity of (1) to be « if this event occurs
with positive probability under w). The decision rule corresponding to these
functionals is: observe up to time 7' and then (in case T is finite) adopt the esti-
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404 DVORETZKY, KIEFER AND WOLFOWITZ

mate 6. If T is a constant independent of the sample function z(¢) then the
procedure is not truly sequential. It is called a fixed-size or fixed-time estimation
procedure. Throughout this paper we shall by x(f) mean z({+); that is, the
sample functions are to be considered as continuous from the right.

For a given w the risk associated with such a procedure is defined by

(1) Ru(T, 8) = Euo{c(T) + W(w, 8)}

where E,, denotes the expected value under the assumption that w is the true
value of the parameter, provided the expected value exists. Assuming the ex-
pected value to exist for every wcQ we define the maximum risk associated
with T and é by

2) R(T, 8) = sup R.(T, s), -

the supremum taken over al! we Q.
An estimation procedure (T, §) is called minimazx if

@3) R(T, ) = R(T, 5)

for any functionals 7" and § for which (2) is defined. If no minimax estimation
rule gxists, it is still possible to define a minimax sequence of decision rules
T.,do(n =1,2, ), that is, a sequence for which

4) lim R(7,,3,) = inf R(T, ).

In the cases we treat it will be shown that a minimax rule does exist. However,
a slight relaxation of the assumptions (e.g., dropping the continuity assumption
about the cost function c(f)) may affect the existence of minimax rules, and in
such cases one has to modify the argument only slightly in order to find a minimax
sequence (which, in the cases treated below, may be taken to consist of fixed-time
rules).

Let { be a Borel field of subsets of @ and R, (3, T) be a measurable function of
w with respect to ¢. Let F(w) be a probability distribution on Q. Then, assuming
the integral to exist, we define

(5) RAT, 8) = [ BT, 8)dF ().
Q
The estimation rule (T'r, 8¢) is called a Bayes rule for F if

(6) Re(Tr, 8¢) = inf R(T, 5).

We shall denote by 6" fixed time estimation rules with constant observation
time 7', and in this case we shall write 6" instead of the pair (7, 8). We define

o) r(s") = EW(a, 57

and

®) ro@") = [ 767 dF ().
Q
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37 is called a T-Bayes estimation rule for F if (8) assumes its minimum for 67 = §7.
Let A be any set of sample curves z(f) for which the probability P{xz(t) ¢ A}
is defined and is a measurable function of w. Let F(w) be any distribution function

over 2. Then for every A for which P(4) = _/; P{z(t) e A}dF(w) > 0 we define
the a posteriori probability distribution F(w|A) by assigning to every Borel -
set Se¢ the probability P(4)™ ‘L P{xz(t) £ A}dF (). The a posteriori T-risk
corresponding to F and 4" is defined by

©) re(67 | A) = fn ro(87) dF(w | A).

If r¢(8" | A) is independent of A we say that the a posteriors risk s independent
of the sample z(t), (It is assumed in the sequel that ‘“many’’ sets A with the above
property exist. This is of course the case for the processes usually encountered
in mathematical statistics and in particular with families of processes, like those
treated in this paper, with which are associated sufficient statistics of a simple
nature. Since our primary interest is in statistical applications there seems to be
no point in inserting a lengthy technical discussion of the precise measurability
properties required in order to insure that the class of sets A will be sufficiently
rich.) '

We shall make frequent use of the following obvious remark, which is a familiar
tool in decision theory (see, e.g., [4]).

Suppose that, for every T = 0, there exists a sequence of probability distributions
Fu(n = 1,2, --- ) for which there are corresponding T-Bayes solutions &5, with the
property that the a posteriori risk associated with F, and 87, is independent of the
sample x(t), and suppose that there exists 57 for which
(10) r(T) = sup r.,,(S’) = lim 7p,(37).

If there exists a To (0 = Ty < ) for which
(11) c(To) + r(To) = lrngi? [e(T) + (T)]

holds, then the fized time rule 3™ is a minimaz estimation rule.

The proof of this assertion is evident. Indeed, the conclusion remains valid
under weaker assumptions. As this is not needed for the sequel we just point out
that we could have dropped the assumption of risk independent of the sample and
replaced (10) by

sup r,(37) = lim inf ¢ (6% | A).
@ n=0w A

It may also be worth while to remark that if no 7T\ satisfying (11) exists, we still

. have a minimax sequence of estimation rules all of which are fixed-time rules.
(These results clearly remain valid also if randomized rules are considered.)

In the examples treated in the sequel #(T) is a nonnegative continuous function.
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We assume that the cost function ¢(7T') is nonnegative, lower semicontinuous,
and tends to infinity as 7' — . These assumptions guarantee the existence of a
T, which satisfies (11).

We remark, finally, that in the examples of Sections 2 and 3, the minimum of
(11) will always be achieved for T > 0, since R(0, ) = o for all 6. In the ex-
amples of Sections 4 and 5, this need not be the case. Analogous remarks apply
to the discussion of Section 6.

2. The Poisson process. This is defined for every A > 0 as a process X, (t)
with independent stationary increments which satisfies

(12) P{X\(t) = z} = (>;z')’ e (x=0,1,2 ---)

forall t = 0.

We let @ be the half-line 0 < X < » and ¢ consist of the usual Borel sets.’
Our problem is to estimate the mean X. It is well known that x(T) is a sufficient
statistic for A when the sample curve z(¢) is observed for 0 < ¢ = T.

As weight function we take, following Hodges and Lehmann [3] and/Girshick
and Savage [2],

(13) W, 5) = %(a -V

This is the squared error measured in terms of the variance. As these authors
point out, the classical squared error (5 — \)° gives, for every finite time, infinite
minimax risk, and is thus of no interest unless some additional information about

A is known.
Let F.(A\), n = 1, 2, - - - be the probability distribution on the half-line A > 0

with density

(14) ) = 1 (0 <2< w).
Let the process be observed during the time 0 < ¢{ < 7. The a posteriori prob-
ability distribution when x(T) = x is well defined and its density is given by

N N aam
f,,()\lx)—;' T—l—;—b e 0 <\ < o).
The a posteriori T-risk (see (9)) is given by
n6" o) = [ )1\(5’ — N\ | 2) dn
0

It is easily seen that this is minimized by taking

x

Gr(x(T) =2z) = l/jomifn()\lx)d)\=————T+ /n’
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Therefore the T-Bayes solution corresponding to F.(\) is given by |

15 AT z(T) )
(15) O = T 7n
The corresponding a posteriori risk is

N
(16) ?'n(5n | z) = m,

which is independent of xz(T) (hence, z(T) being a sufficient statistic, of the
sample). )

On the other hand, taking
(17) 8= 22

we see that

AT —_ —\T & (AT)I — 1
nE) = gx zl T
for all A > 0. Thus we have the following.
For the Potisson process (12) with 0 < X\ < o and weight function (13) the fixed-
lime estimate (17) with T = T, given by

(18) oTy) + - = min [c(T) + %}

s minimax.
3. The Gamma process. This is defined for every pair of positive numbers r

and 0 as a process X, () with independent stationary increments such that
X,6(0) = 0and foreveryt > Oand z > 0

z xrt—l .
(19) P{Xno(t) < 2} = fo .
The parameter r will be assumed known, and the space € will consist of the
half-line 0 < 6 < <, the Borel sets being the ordinary ones.” Here again it is well
known that if the sample curve z(t) is given only for { < T then 2(T) is a sufficient
statistic for 6.
As weight function we take

(20) Wo,5) = [(g) - 1]2,

v being an arbitrary positive number. For ¥ = 1 this weight function, like (13),
» 1s proportional to the square error of the mean measured in terms of the variance
and occurs in Hodges and Lehmann [3] and Girshick and Savage [2].
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Let F,(6),n = 1,2, - - - be the probability distribution over § > 0 with density

o—l—lln —1/0
(21) fa(0). = BOR 0 <6< o).

The a posteriori probability distribution when 2(7') = z has the density

_ (x + 1)r1'+l/ne—-(z+l)/0

(22) 1812) = fer e 0 <6< )
The a posteriori 7-risk is given by
T 78\ :
(23) e | 2) = | [() - 1] 10| ) do.
) 0 .
It is minimized by taking

n 00 0 , 1y
Q1)  87(T) = o) = [ [rneia/| runei do]
0 0
I(rT + v+ 1/n) ]“’
rGT + 2y + 1/n)
Substituting this value in (23) we obtain

_ TT4+ v+ 1/n)
reT + 1/0)1¢T + 2y 4+ t/n)’

which is independent of x(T').
On the other hand the estimator

=(x+1)[

(25) (8% | ) = 1

AT T + v) th
0 - (o] =@
gives
) @) =1 = Tk

rTr@eT + 2y)

forall0 < 6 < . Since (27) is independent of 8 and is the limit of (25) asn — o

we have:
For the Gamma process (14) with fixed r, unknoun 0 (0 < 6 < ) and weight
SJunction (20), the fixed time estimate (26) with T = T, given by

o R N GV 2 . T+ )
(28)  e(To) T(rT)T(rTo + 2v) [rn>“ol [C(T) reTreT + 27)]

s minimaz.
If instead of using the weight function (20) we use, following Girshick and

Savage (2],

(29) W9, 8) = log’

I

b
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that is, the squared error when log 6 is considered as the parameter, then we find
that for the distributions (21) the a posteriori T-risk is minimized by taking

r'eT + 1 /n)}

§7(x(T) = 2)= exp L Tlog 06 2) d0 = &+ 1) exp {" T(rT + 1/n)

and that the corresponding value of the a posteriori risk is

(T + 1/n) _ [I"(rT + 1/n)]2

r(T + 1/n) T(T + 1/n)
which again is independent of z. Since
30) 87 = z(T)e T OMITED

has the constant risk function

reT) _ I:I"(rT)]z
reT) LTCT) |’

we have as before:
If, instead of (20), the weight function (29) s used, then the fixed time estimate

(30) with T = T, given by
Ty [T'CTOT _ . T [T6T)T
(1) «(To) + - [I‘(rTo)] = min {c(T) + e [I‘(rT) ]}

T (T To)
ts minimax.

4. The Negative Binomial process. This is defined for every w > 0 as a process
X.,(¢) with independent stationary increments satisfying X,(0) = 0 and

_ _ T+ x) ' _
(32) P{X,(t) =z} = ORCE TR z=012--)

for every ¢t > 0. It is customary to put

(33) P=iTa 1T T3a

w

then (32) becomes

P(t + x) t x '
P{Xw(t)—x}—mmpq (=012---).
As Q we take the half line 0 < w < o, the Borel sets being the usual ones.’?
It is easy to see that z(T') is a sufficient statistic for w when z(f) is observed for
0=t=T
X.(?) has mean wf and variance w(1 4 w)i. It is easily seen that the square
werror (8 — w)® would give an infinite minimax risk. We therefore use as weight
function
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_ G- _p(, _aY
(34) W6 = i q@ p>

which is proportional to the square error measured in units equal to the variance.
Let Fu(p),n = 1,2, - - - be the probability distribution over 0 < p < 1 with
density

2+ l/n) —1+1/n

T@T(A/m) O<p<l).

(35) falp) =
If the process is observed for the period_(_) =t = T and z(T) = x then the a
posteriori probability distribution has density

(424 T+ 1/0) ro141/n a4t
T(z + 2T(T + 1/n) 1

falp|2) = 0<p<1).

The a posteriori 7™-risk is
1 2 2
@19 = [ 2 (57~ ) ol ),
o q p

and is minimized by taking

1

pfa(p | 2)dp
8"@(T) = 2) = —j‘iﬁé r+1

A %fn(p | 2)dp

T T+ 1+ 1/n°

Therefore the T-Bayes estima};e corresponding to the a priori distribution #,.(p)
with density (35) is given by &7 = (x + 1)/(T + 1 + 1/n). The corresponding
a posteriori risk is

AT _ 1
(36) rn(Bn l x) = i +‘ 1“':I_-Wn ’
which is independent of z(7') and, therefore, of the sample.
For every given w, 0 < w < o, the estimator

z(T)

N AT=
(37) ‘ 0 T+ 1

gives the risk

z_rf”( z _g)’ M(T+32) r._ TH4gq
S\ TF¥1 ) T+ DP Y =T+ 1)

The supremum of this expression for 0 £ w < o« is 1/(T + 1) by (33); that is,
equal to the limit of (36) as n — «. Hence (10) holds and the remark of Section 2
may be applied to give the following.
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For the Negaiive Binomial process (32) with 0 < w < « and weight function
(34) the fixed time estimate (37) with T = T, given by

3 (1) + gy =min | o) + 7 |

s a minimax estimate. '
It may be worth while to remark that (37) is a biased estimate. Indeed the
expected value of it for given w is Tw/(T + 1). The unbiased estimate z/T gives

a constant risk 1/7.

5. The Normal (Wiener) process. This is defined for every real u and positive
o as a process with stationary independent increments such that X, ,(0) = 0 and

1 @ .
P{Xn,c(t) < x} = -\/—2_7:27./‘ e—(z-nt)2l2¢2z dx

for every real x and ¢ > 0.
The parameter o will be assumed known and the space @ will consist of the

real line —® < u < o, the Borel sets being the ordinary ones.
As weight function we take any function of the form

(39) W, 6) = w(|p—28])
with w(z) nonnegative and nondecreasing for = 0.

In the present case it is not necessary to perform computations similar to
those of the preceding sections, since it is easily seen that the arguments of
Wolfowitz [4], where a discrete time parameter was considered, carry over to

the present case.
The fixed time estimator
AT z(T)
(40) o = T

gives for T > 0 and any real u the T-risk
r(37) = X 21 f w(z)e ™ """ dz .
\/1r¢7 0
Moreover it is easily seen that 7,(87) is, as a function of T, for T > 0, nonincreas-
ing, continuous from the right and that

(41)

lim 7(3") = lim w(x).
T]0

Z—>C

Disregarding the trivial cases 1) when
(42) f w(z)e™™ dx
0

.«is divergent for all &, that is, when the risk is always infinite, and 2) w(z) =0
when the value of the estimator is of no consequence, we have:
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For the Normal process with fixed variance o°, unknown mean u and weight
Sunction (39) with w(x), x = 0, not identically zero, nondecreasing, and such that
(42) converges for at least one value of h, the fived time estimate (40) with T = T,
giwen by ' .

Ty + V2T [ wx)e ™ 7% gy

\/'r—ra 0
. \/2'1y ® —27/ 202 :l
= rrrngr}) [c(T) + Ve j; w(x)e dx

is minemax, where the term following c(T) apd c¢(To) in (43) vs replaced by sup, w(zx)
for T =0o0r Ty = 0, and where (40) may be replaced by any estimator if the
minimum of (43) is at T = 0 (which can only occur ¥f w is bounded).

For further remarks on the normal process see the next section, especially
6.4 and 6.5.

6. Generalizations and other remarks.

6.1. It is by no means impossible to have practically continuous observation
of a stochastic process. However, our results apply without any modification to
stochastic processes with a discrete time parameter or, more generally, to the
case when the observations can be made only at times belonging to some set
given in advance (there is, of course, no loss of generality in assuming the time-
parameter continuous). Indeed, if I is any closed subset of the reals and an ob-
servation at time 7 may be made only if T ¢ I, all our results remain valid pro-
vided T and T in (11) [respectively (18), (28), (31), (38) and (43)] are restricted
by the condition that they helong to I. (The same end could be achieved by
having ¢(f) = o« for t £ I and dropping or suitably modifying the assumption
that ¢(¢) is continuous.)

For the special case I = {0, 1, 2, --- } we have the usual discrete time case;
if, furthermore, ¢(t) is a linear function of { we have the classical sequential case.
In this classical case, Hodges and Lehmann [3] obtained by a different method
the fact that the fixed-sample estimator of Section 2 on the Poisson process as
well as the first estimator of Section 3 on the Gamma process (for the weight
function (20) with y = 1), both with 7 = n, minimize sup,E,W (v, 8) subject to
sup.liuN = n, where N is the number of observations required (a chance variable)
and n is a given positive integer. These results are implied by, but do not imply,
ours (see [5], Lemma 5);-as remarked in [3], their method does not seem applicable
to our problem. The (Gamma process with the weight function (29) was con-
sidered nonsequentially by Girshick and Savage [2] who, using a different method,
-established that (30) is a minimax estimator for the fixed sample size problem.
As far as we know the Negative Binomial process has never been treated before
even nonsequentially.

6.2. The impossibility, in practice, of observirg a process for a continuous
range of time may be taken care of in the following manner. We replace c(l)
by ¢(n; ti, t2, -+, t.) which represents the cost of taking n observations at

(43)
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times i < &, < -+ < .. The function ¢(n; &, ---, t.) is assumed to
satisfy appropriate conditions such as being nonnegative and satisfying
cn+ 1ty o b)) ey ly, o0y tica, biga, crr , ) forn = 0,1, - and
;= 1,2, ---,n 4+ 1. Our resultg easily carry over to this case. Thus, for ex-
ample, for the Poisson process with the weight function considered in Section 2
a minimax estimation procedure is to take a single observation at time 7 = T,
for which ¢(1; T) + 1/T becomes a minimum, and to estimate A by 2(To)/ T, .

This modification of the problem may be combined with that of Section 6.1
by considering only times belonging to a given set I.

6.3. Another modification of the sequential estimation problem is the follow-
ing: The statistician is required to estimate w continuously by a function 3(t)
which is a functional of the observed process up to time ¢, and the loss function is

f W(s(t), «)dG(t) where G(t) is a monotone nondecr'éasing function. Our meth-
0

ods apply also to this modified problem. For example in the case of the Poisson
process with the weight function used in Section 2 a minimax procedure is ob-
tained by taking 8(f) = z()/t.

This formulation may be combined with that of Section 6.2 by having a cost
function ¢(n; t1, -+, ta; v, 71, - -+, T») Which expresses the cost of observing
the process at times # < --- < ¢, and changing the estimator 4(f) at times
71 < --+ < 7,. Here again if for every T we can find a sequence of probability
dlsmbutlons with 7-Bayes solutions for Whlch the a posteriori risk is inde-
pendent of the sample and an estimator 8, satisfying (10) we deduce that a
minimax procedure is obtained as follows: choose n, t1, <+ , tn, ¥, 71, ***, Ts
s0 as to minimize

C(n;t17 eyl T, 0 77'n)+f T(Z)dG(t)

Wheret = maX;<,; tifor 7; £ ¢ < 7j41 (with 7,41 = ), and estimate by 6(t) =
8¢, It is easily seen that if ¢ reduces to a function of n and v only which is mono-
tone in both arguments, then one can choose the r, from among the ¢; .

This modification may also be considered together with that of Section 6.1.
We may further combine it with a weight function which is dependent on the
time, etc.

6.4. Throughout the paper we dealt with the problem of point estimation,
but it is possible to treat similarly the problem of sequential interval estimation
(including that of one-sided estimation). In particular, for the case of the Normal
process the results of Wolfowitz [4] carry over to the case of a continuous time
parameter.

6.5. We would like now to make some remarks about a class of estimation
problems best exemplified by the problem of estimating the variance of a Normal

Process. ‘
“  Let Ty and T; > T: be any two nonnegative numbers and put tm,» = T1 + (n/2™)
(Ty — Ty) form=1,2,--- ;7 =0,1,---, 2" It is well known (see [1]) that
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if z(¢) is a sample function of the Normal process then

2m
hm z; [x(tm.n) - z(tm,n—l)]z = 02(T2 - Tl)

with probability 1. Therefore if 6ne could observe a Normal process withoul error
for an arbitrarily short period of time one would know the correct value of o
with probability 1. To make the problem practical it is necessary to modify
the problem somewhat, for example, in the manner suggested in Section 6.2. We
observe that if X(¢) is the Normal process with mean x and variance ¢ then,
for every positive 1" and ¢, the random variable (1/26)[X(T + t) — X(T) — ut)’
has the Gamma distribution given by (19) with» = 1, 0 = ¢" and ¢t = 1. There-
fore, if the mean is known and the problem is to estimate the variance we could
apply the results of Section 3 (with the modifications suggested in Section 6.2).
If both the mean and the variance are unknown again only a slight change, corre-
sponding to the loss of one degree of freedom in the chi square distribution, is
necessary.

The situation encountered in this last subsection does not occur if the process
is observed continuously but not exactly. This may be done in various ways, a
suggestive one for estimating the variance being the following. The process is
observed continuously but only deviations exceeding a prescribed size A are
recorded ; that is, we are given a sequence of real numbers 0 = tp < §; < fe < ---
having ,the property that | x(t,+1) — #({,) | 2 A while | z(t) — z(t.) | < A for
t, <t < t,,+1,(n = 0, 1,2, )

6.6. One may also consider for continuous (in time) processes such problems
as those of sequential unbiased estimation (see [6]) and of unbiased estimation
at the conclusion of sequential hypothesis testing (see [7], [8]). For example, for
the first of these, one can prove an analogue of the extension of the Cramér-Rao
inequality proved in [6], where for our setup En is replaced by ET and f(z, 6) is
replaced by the probability function or density function of z(1) in equation
(4.5) of [6]. Under regularity conditions analogous to those of [6], and which are
satisfied for the four processes considered herein, the proof (also valid for biased
estimators) may be carried out by dividing the time axis into intervals of equal
length and allowing the length to approach zero. In particular, the fixed duration
estimator of duration 7 and with estimator z(7)/T is an unbiased estimator of
N\, 78, (1/p) — 1,and p (for the cases considered in Sections 2, 3, 4, and 5, respec-
tively) for which equality holds in this extended Cramér-Rao inequality. This
inequality could also be used to apply the technique of [3] to our problems. The
two problems described above will both be considered in detail in a future paper.

Finally, we remark that many of Wald’s general results on decision functions
(complete class theorems, etc.) carry over to the present case of continuous time
processes under suitable assimptions. As in [1], the main difficulties in the general
theory are ones of measurability, and we shall not bother with them here. We
, shall return to these problems in a future publication.
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