ADMISSIBLE TESTS FOR THE MEAN OF A RECTANGULAR
DISTRIBUTION!
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1. Summary. Explicit characterizations are given of the minimal complete
class and a minimal essentially complete class of tests of a simple hypothesis
specifying the mean of a uniform distribution of known range. Examples are
given of tests which are optimal against various alternatives.

2. Introduction. Let ps(x) be the density function of a uniform distribution
with mean 6 and known range R. Without loss of generality we may assume
R = 1, so that

1 fo—3<z<6+3

pule) {0 otherwise,
for any real value of 6.

Consider the problem of testing a simple hypothesis specifying the value of
0 on the basis of a sample of n(n = 2) random independent observations
21, Ta, ... Tn . Without loss of generality we may take the hypothesis to be
Hy:0 = 0. We shall consider tests of H, against the general composite alterna-
tive hypothesis H;:0 # 0.

It is known that a minimal sufficient statistic [1] for pe(x) is (u, v), where
u = min; x;, ¥ = max;Z; . For all statistical purposes we may restrict our at-
tention to the range of (u, ») as sample space rather than the range of
(@1, T2, + - o), as is shown for example in [2]. Thus we take as sample space
T = {(u,v) | u £ v < u+ 1}. Any test procedure may then be represented by
a decision function &(u, v), where 8(u, v) is a real-valued Lebesgue-measurable
function defined on 7T, satisfying 0 < & (u, ») < 1, and such that the test pro-
cedure rejects H, with probability 8(u, v) when (u, v) is observed. Hereafter by
“g test 8’ we shall mean a test represented by a Lebesgue-measurable function
6 = &(u, v) of the kind just described, and hereafter ‘“‘measure’ will refer to
Lebesgue mieasure. It is to be noted that in the following sections ‘“the class of
all tests”’ will be understood to be ® = {8(u, v)}, and not the class of all decision
functions 6(x; , 22, + + * *.) defined on the original sample space.

The distribution of (u, v) is given by the density function

Po(u, v) = n(n — 1) ky(u, v)(v — w)**
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where

1 ife—3i<usv=6+1
0 otherwise.

]Co(u, v) = {

3. Characterization of the mininral complete classes. For any test 8, let
Bs(0) be the probability of accepting Hy, when @ is the true mean; that is,

Bs(6) = fT po(, 0) (L — 8(u, v)) du do.

Let r5(8), the risk function of the test 8, be defined as the probability of an in-
correct decision; that is,

© = {65(0), 6 % 0,
"= - s, 6=,

Let %A’ be the class of nonrandomized decision functions each having as accept-
ance region the interior of the subset of Ty = {(u,v) | — 3 < u < v < %}
which lies above the graph of an arbitrary nondecreasing function v(u).

The class % of tests is defined as follows: § £ ¥ if and only if there exists a

&’ € Y’ such that the set
{(u, v) | 8(u, v) # &'(u, v)}

has measure 0.
TaeoreM 1. U s the class of essentially unique Bayes solutions.
Proor. For any test § and any cumulative distribution function £(8) we have

n® = [ n@d).

From' the definition of 7;(6) we have, letting v = £0+) — £0—),

° 04
@ = [ 60 & + [ 1~ 26:0)) &0
=v+ fTo [E(w + 1) — £0 — 3) — 2v] po(y, 0)(1 — 5(u, v)) du dv

+ T—T, I:./.._: po(, v) dE(o):l (1 — 8(u,v)) du dv.

To minimize r;(s) with respect to & it clearly suffices to define

0 ifg(u+3) — £ —3) — 2y <0,
1 8(u,v) = )
1 otherwise.
Now assume § ¢ . Let v(u) be that single-valued nondecreasing function
which characterizes §, in the manner described in the definition of [ above, to
within a set of measure 0. Let u(v’) = inf {u | v(w) = v}, —3 < v £ }.
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Let £(6) be any cumulative distribution function which places zero mass in
the open interval (—1, 1) and positive density at every other point. Let £(6) =
1(£(0) + £(60)), where £(8) is the cumulative distribution function defined by

0, 6 -1
iBHuE+9], -1<6=0,

b0 = 2y + 2. 0<6=1, where vy = £(0),
1, 1<

To verify that £(6) is nondecreasing, it suffices to note that u(v’) is nondecreas-
ing and never exceeds %, and hence vy < 14. We obtain as a Bayes solution rela-
tive to £(6), after simplification,

0 if (u,v)eTy and u < u(),

do(u, v) = { .
1 otherwise.
It is clear & is an essentially unique Bayes solution relative to £(6), and hence
that § is also.

Conversely let 8, be an essentially unique Bayes solution relative to some £(8).
Then one Bayes solution with respect to £(6) is given by & as defined in (1)
above. Since &, is an essentially unique Bayes solution relative to £(6), 8 =
almost everywhere. Since £(u + %) — £(»v — %) is nondecreasing in % and nonin-
creasing in v, it follows that é £ 2 and hence that & ¢ .

TaeoreM 2. A’ s a minimal essentially complete class.

Proor. Let ¢ be the set of £(8)’s which are everywhere strictly increasing,
and let C; be the class of Bayes solutions relative to members of {. Then the
assumptions of Wald’s Theorem 3.19 in [3] are satisfied; the conclusion of the
theorem asserts that the closure C; of C; is essentially complete.

To show that % D C;, let £ be any element of ¢, and let 6 be the corresponding
Bayes solution given by (1). The derivation of (1) shows that é is essentially
unique if ¢ is everywhere strictly increasing. Since & ¢ o, % D C; . Since U is
closed, % O C; . Thus ¥ is essentially complete, and it follows that U’ is essen-
tially complete.

Let & and &’ be any two different elements of ’. Since § # &’ on a set of posi-
tive measure, and since each is an essentially unique Bayes solution, it follows
that for some ¢, r;(6’) > r5'(6'), and for some 8”, r5(6”) < r5:(6”). Thus no ele-
ment of A’ is uniformly as good as any different element of ’. Hence A’ is
minimal essentially complete.

CoroLLARY. ¥ ¢s the minimal complele class.

Proor. It was shown above that ¥ is an essentially complete class consisting

. of admissible tests. If § is admissible but not in %[, then U contains a test ¢’ with
r5:(8) = r5(0). Since &’ is an essentially unique Bayes solution, § = &’ almost
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everywhere, and & ¢ ¥, a contradiction. Hence there is no admissible test not in
A, and U is complete.

It is interesting that the conclusions of Wald’s Theorems 5.5 and 5.7, which
characterize complete classes of tests, become virtually empty in the case of the
present problem because these classes contain virtually all tests with acceptance
regions in T .

4. Examples.

Example 1. One-sided alternative. If a test of size « having high power against
alternatives § > 0 is desired, the Neyman-Pearson lemma may be used to con-
struct the (essentially unique) best test of H, against the simple alternative
Hi:6 = 1 — o™, This test is characterized by

1
u —1=zsu<i-dM

()— ’
n\u) =
2 —QI/SUS%.

(Y

By using the Neyman-Pearson lemma to construct best tests of H, of size o
against any simple alternative Hy: § = ¢, 0 < ¢ < 1 — o"'", one can verify
that the above test has, at each 6, 6 > 0, the maximum power attainable by
any test of size a; hence the above test is uniformly most powerful against the
composite alternative Hy: 6 > 0. ‘

Example 2. Two-sided alternative, locally best tests. If a test of size «, hav-
ing the greatest possible power against alternatives @ close to zero, is desired,
we may take the test characterized by

( 1/n
U, —%§u<_T’
1/n 1/n 1/n

[+4 a a
vu) =y—- —— =u S -
(u) 2’ 2 2’

al/n
u, 7§u_%.

As in Example 1 it can be verified that this test hasat each 6, | 6 | < 3(1 — at'™),
the maximum power attainable by any test of size a; hence this test is uniformly
most powerful against the composite alternative H1: 0 < | 6 | = (1 — )
Again using the Neyman-Pearson lemma as above it can be shown that this
test is, among all admissible tests, uniformly least powerful against the composite
alternative Hy¥ | 6 | = %(1 + a''™). Itis of interest to have such a simple example
of a locally best test which is the worst possible of all admissible tests against
certain ‘“intermediate” alternatives (all tests A contained in 7, being good
against “distant” alternatives).

Example 3. Two-sided alternative with indifference zone. If a test of size
a is desired having the greatest possible power against all alternatives except
possibly values of 8 close to 0, we may take the test characterized by:
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CasEA. a = )"

Case B. o > (3)"

rvo, — = u< —u,
1

v(u) = i

1
3 —vn=u=3

where v, is determined by
—vo o}
1_a=~/i fpo(u,v)dvdu,
3 Jug

Comparison with the power function in the previous example shows that there
exists no uniformly most powerful unbiased test of H, .
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