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1. Summary and introduction. This is the first of two papers describing a study
of the effect of departures from assumptions, other than normality, on the null-
distribution of the F-statistic in the analysis of variance. In this paper, certain
theorems required in the study and concerning the distribution of quadratic
forms in multi-normally distributed variables are first enunciated and simple
approximations tested numerically. The results are then applied to determine the
effect of group-to-group inequality of variance in the one-way classification. It
appears that if the groups are equal, moderate inequality of variance does not
seriously affect the test. However, with unequal groups, much larger discrepancies
appear. In a second paper, similar methods are used to determine the effect of
inequality of variance and serial correlation between errors in the two-way
classification.

2. Distribution of quadratic forms in multi-normal variates. In what follows
we write x’(») to denote a quantity distributed as x* with » degrees of freedom
and F(y, »;) to denote a quantity distributed as the Fisher-Snedecor F with
v1 and v, degrees of freedom.

By obvious extension of a theorem due to Cochran [1] we have

TrHEOREM 2.1. If 2 denotes a column vector of p random variables 21, 22, -+ , 2p
having expectation zero and distributed in a multi-normal distribution with p X p
variance-covariance matrix V, and if Q@ = 2’Mz in any real quadratic form of rank
r < p, then Q is distributed like a quantity

(2.1) X = ; Aix*(1)

where each x° variate is distributed independently of every other and the N’s are the
r real nonzero latent roots of the matrix

(2.2) ! U=VM.
It readily follows that
TuroreM 2.2. The sth cumulant K,(Q) is given by

(23) K(Q) = 27'(s — 1! E A

i=1
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Calculation of this quantity is often facilitated by using the relation

(2.4) § A= tr(VM)* = Z Z Z Uab Upe * * * Usa

a=1 b=1

whence the first few cumulants of @ may readily be derived without actually
determining the N’s. In particular

(2.5) Ki(Q) = Z%
(26) Kz(Q) =2 a;: bgﬁl Uab Uba -

When the A; are all positive, the following x* series due to Robbins and Pit-
man [2] may be used to obtain the distribution of X = Y ji A x’(v;).
Tueorem 2.3. If X, is some constant greater than zero then

@.7) PL<Pr{X>X) <P

where

(28)P, = IZ:%CzPr {x2(v + 20) > %}4— <1 - gcl> Pr{xz(v +2n 4 2) > j-‘:—”}
(2.9) P, = gcz Pr{xz(v + 20) > ‘Z} <1 — i >

1=0

and the constants c; are such that D1 ¢; = 1 and are defined by the identity

(2.10) 112 {a77"*[1 — (1 — a7Hw] ™%} = f} crw

1=0
a1 = M being the smallest of the \j, a; = \;/\ (5 # 1), and i1 (v;) = ».
If the component degrees of freedom »; are even, a finite x° series, derived
below, may be used whether the \; are positive or not.
THEOREM 2.4. The exact distribution of X = Y o1 Nix"(v,), where the v; = 2g;
are even integers, is a weighted finite sum of x* distributions,

@.11) Pr (X > X0) = 3 3% ai Pr x'(28) > Xo/h
. o e
and a;, 18 a constant involving only the N’s and is given by
(2.12) - az = f7700)/(g; — 9)!
where £ (0) is obtained by differentiating fi(y) h times with respect to y and then
putting y = 0 and

No— N, AT
(213) 5w = T[4y Y]
i5] N N
In the special case r = 2, a series of this type has been used by Satterthwaite

[3]. The general theorem is conveniently proved as follows.
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Proor. Since g; = »;/2 is an integer, the characteristic function

(2.14) o) =TT (1 — 2in,)™i
Jm=1
can be resolved into partial fractions
r T ['7]
(2.15) ITa —2i)=i =2 2 a1 — 260)~"
J=1 J=1 s=1

where the aj, are constants not containing ¢. We recognise this expression as the
characteristic function of a quantity v whose probability density function is

(2.16) p(v) = g }_i e DDA x%(28)}.

Hence X is distributed like » and equation (2.11) follows at once.
To find the values for the constants, (2.15) is written in the form

g
(1 — 2% H (1 — 260\)7% = D ai(1 — 2\,)~°
Jt 8=l

@2.17) o
+ 33wl — 2itn)™

J#t w=1
Putting y = 1 — 24\; and multiplying both sides of the identity by 3°‘ we have

T )\ A A —9j g4 s
P52} - S
218) 7T T ”

If y is put equal to O we have

(2.19) Qigy = II{ Ai }ai.

E >\i - )\j

To obtain the remaining constants we differentiate both sides of identity h times
and then put y = 0. There will be no contribution from the second member on
the right-hand side of (2.18) and the term >_2%; a0y " will contribute hla;y, 1 .
Thus

® —a
(2.20) Qigi—h O where fi(y) = H{ . —N +y A’} )

h' e 1

In practice the constants can be most easily found as follows.

@21 fi(y) = H{ b } H{l +y X.}—“

J# )\n‘ - )\j FE 31

T : 93 x
(2.22) = II{ A } exp{ > log[l +y s ]}
iri (M — Aj izt — N
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Since ¢ can always be chosen so that |y | < 1, we can expand each side of the
equation and equate coefficients.

w0 (k)
(0
Qigi—h ?/h = Zf"“h("—‘) y*
0 ‘e

_ r )\i 95 0 yh r [ _>\j ]h

B :‘I;‘[i{h - M} eXP{gﬁ:; Giln=nl/
The relation between a;,,_; and the coefficient of 3" on the right-hand side of
(2.23) is the same as that between the hth moment about the origin u and the
hth cumulant X, . The well known equalities expressing the moments in terms

of the cumulants may be used, therefore, in calculating the coefficients required
above. For if we write

(2.24) Ko = (h = 1! i{gj [T—:—M"jh}

o0

h=

(2.23)

i
then
(2.25) Qigih = (I/«;h/h!)aig;
r - A . gi
2 ig; = - .
(2.26) s :LIi {)\z’ - )\j}

3. Investigation of the accuracy of a simple approximation to the distribution
of a nonnegative quadratic form. Welch [4], [5] and Fairfield Smith [6]} have repre-
sented the distribution of a particular nonnegative quadratic form, when r = 2,
by that of Z = gx’(h), the constants g and & being chosen so that the distribution
has the same first two moments as Q. Satterthwaite [3] has suggested its use in
the general case (r = 2) when we have

TaEOREM 3.1.

Q =2Mz = Z; Nx @)
~

is distributed approximately as gx"(h) where
Ka(Q) _ 2w 2{Ku(@)}* _ X wi\y)”
3.1 =4{_—= = — and h = = Mg 3
S A ORI RQ S
It should be noted that the effective degrees of freedom, A, are necessarily
less than the number appropriate if the \; were all equal. For if

IR PN S Z S R SUIEERIAD Y IR Wi

and u are any positive real numbers, then

r

(3.2) 2l — W)z 0,

=i

and if u is the weighted mean of the \’s, that is if
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TABLE 1
Comparison of Approximate and Ezact Distributions of Some Quadratic Forms

Values of Aj Degrees of freedom Exact probability (%) of exc;gtilll;x:g approx. 100a% significance
A Az | As : A4 No | v we| va | ma| ws 1:)0a/0 = 5.00 10.00 25.00 50.00 75.00 95.00
1,23 214 6 5.04 9.94 | 24.56 | 49.74 | 75.07 | 95.96
3121 | 24 6 5.08 9.87 | 24.41 | 49.41 | 75.27 | 95.69
10 {61 ; 24| 6 5.10 9.75 | 23.91 | 49.95 | 75.63 | 96.54
10 {21 ! 24| 6 5.20 9.54 | 22.66 | 47.61 | 77.25 | 98.16
10 {211 22| 2 5.08 9.68 | 23.56 | 48.68 | 76.95 | 97.82
10 |51 | 41812 5.16 9.92 | 24.22 | 49.06 | 75.16 | 98.22
514|132 . 1122 4166 5.15 10.15 | 24.40 | 49.32 | 75.14 | 95.72

3.3) w= (g v; )\j\ i Vi,

Jj=1

then (3.2) is equivalent to

7 r 2 T
(3.4) 2 vkl — (E Vﬂv) 2 20,
j=1 Jj j=1
that is
” 2 14 4
(3.5) (_Z ijj) 2 viNi = v
J=1 j=1 =1

Although an approximation of this kind has often been used (see for example
Patnaik [7]), investigations of its accuracy seem limited to the case k = 2 studied
by Satterthwaite [3].

Table 1 shows the exact probabilities (calculated from the finite series of
Theorem 2.4) of exceeding the significance points obtained from the approxima-
tion for a number of particular quadratic forms. This brief investigation sug-
gests that the simple approximation is fairly good over a wide range of values of
v and \. However, when small differences in probability were to be examined,
it would be necessary to apply the method with caution and make checks by the
exact methods.

4. Distribution of the ratio of independently distributed quadratic forms in
multi-normal varieties. By canonical reduction of numerator and denominator,
the ratio Y = Q,/Q. is seen to be distributed like the quantity

) %% = {E 06} /{Enon).

By representing numerator and denominator by infinite x’ series, Pitman and
Robbins [2] have obtained the distribution of ¥, when the \’s are all positive,
as an infinite series in which each term contains a probability calculated from
the F distribution (or more conveniently from the incomplete B-function). In



THEOREMS ON QUADRATIC FORMS 295

our application it will always be possible to arrange that component x™s (at
least of the denominator) have even degrees of freedom.

Employing the Robbins-Pitman [2] infinite series in the numerator and the
finite series in the denominator, we readily obtain Theorem 4.1 (for example by
using Cramer’s theorem [8] congerning the characteristic function of a ratio).

TuEOREM 4.1. If the N’s of the numerator are all positive and if A = o’ is the
smallest of the N’s and Y iy v'jo = ¥/, then

4.2) PP, (Y>Y) =P,

where

r

P, = l};; };1 cv ap{l (s, ¥ + 1)}
+ {1 - Cl’}z 2 aJa{Iz,(s’ w4+ 1)}:

J=1 s==l

(44) Py = ZZ i)c;, apl{la (s, ¥ + 1)} +{1 - > c’,,}.

J=1 s=1 =0

(4.3)

The ¢'’s are obtained from (2.10), the aj, from (2.24), (2.25) and (2.26), I.(pq) is
the incomplete Beta function integral, and z; = {1 + (\;/a1) Yo}

If both numerator and denominator of (4.1) have even degrees we may use
the finite series in both numerator and denominator and obtain

TuroreM 4.2. If v; = 2¢; and v}» = 2g;. are even, then

(4.5) Pr(Y s Yy = 2 > i:aj v aial Ly (s, o))

j'=l §'=21 jaml g==1

where the oy and a;, are obtained from (2.24), (2.25) and (2.26), and z;; =
{1 4+ NYo/N )

Alternatively, if the forms are nonnegative it is usually simpler to use the
following.

THEOREM 4.3. If M, A2, -+ , Ar and A1, Az, * -+ , A, are all positive and the
v; and v; are all even then

a0 e[{E N}/ {Bae)> ] - £ S

1=l s=1

wherethe ag, (6 = 1,2, -+ 1’58 = 1, -+ g;) are constants calculated from (2.24),
(2.25) and (2.26) for the form ik - ;)(2(11;) in which & = A1, &2 = A3, **+,
$o = }\r' ) g‘r’+l = ’-‘Y07\1 y g-r'+2 = —Yo)\z y Ty g-r’+r = “"YO)\T .
Proor. Since the quadratic forms are nonnegative, the left-hand side of (4.6)
may be written

4.7) P =Pr [{JZ;:I )\,/': x2(1/;v) - ,Z.:; Yo xz(v,-)} > O]

which is of the form
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TABLE 2
Comparison of Approximate and Exact Distributions of Ratios of Quadratic Forms
Numerator Denominator Exact probability (%) of
exceeding approx. 100a%
Dﬁg‘:f;:f Values of ’s Degrees of freedom Values of \’s significance point
v: v; v; v: )\: )‘; X: )\: v | v vs | va | vs PN D VR I T b VI D V3 LOO;Z(% 10.00{ 25.00 | 50.00
2|2 12 214 6 3121 4.71 19.63|24.60(49.96
212 12 24| 6 10561 4.24 19.15/24.36|50.00
212 13 214/ 6 1051 4.26 [9.12(24.19(49.93
2|2 12 4 18|12 3121 4.88 |9.76/24.59(49.91
212 13 41812 1051 4.72 19.55/24.31|49.80
212{2/2|1]23|4|2|2| 4{6|6| 5|43 |2]|1]5.03]|9.9524.86/50.05
r'4r .
(48) Pr [21: g';x (V{) > 0} .
fum
Using (2.11)
v’ gi . r+r gj .
49) P=2 3 auPrix(@) > 0} + 3 > awPr (x'(20) < 0}.
i=1 gm=l j=r+1 wm=l
But
(4.10) Pr{x’(2s) >0} =1 and Pr {x’(2w) < 0} = 0.
Therefore,
r’ gs
(4.11) P= Zl Z; Qs .
lem]l 8m=

It will be noted that when this series is applicable, the required probability
may be obtained directly without the rather tedious interpolation in the B-func-
tion tables required by the method of Theorem 4.2.

5. Use of Theorem 4.3 with quadratic forms that are not independent. This
method may be used in suitable cases even if the quadratic forms @, and Q.
are not distributed independently. For if @, and Q. are nonnegative, we may
write

P =Ps{Q/Q:> ¢} = Pr{Q — ¢Q: > 0} = Pr(2’M12z — p2’M2) > 0

1 - u
G _py Mz > 0) = Pr {Z: cx) + 21 eixy) > 0}
i== j=
where ¢; (5 = 1, - -+ , 1) is a positive latent root, repeated »; times, of the matrix

M =M, — M,and ¢ (j = 1, -+, r) is a negative latent root of the same matrix
repeated »; times. In certain investigations (for example in the study of the two-
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way classification of the analysis of variance table) it is possible to ensure that
the »; and »; are all even, whence we may apply Theorem 4.3 and obtain

r! yil2

(5.2) P= Z; Z1 s -

6. The accuracy of a simple approximation to the distribution of the ratio
of independent nonnegative quadratic forms. Since approximation to the dis-
tribution of a positive quadratic form Q by gx’(h) is fairly satisfactory, we may
attempt to approximate the ratio of two independent quadratic forms @ and
Q by fitting x* distributions in both numerator and denominator, in the manner
described.

THEOREM 6.1. If Q' is distributed approzimately as ¢'x*(h") and Q as gx’(h),
a quantity whose distribution approximates to that of the ratio Q'/Q is bF (W', k),
where b = (¢’h')/(gh) and the ¢g’s and W’s are found from (3.1). In fact

6.1) b=K(@)/K(@Q), I =2{K(Q))/K:(Q), k= 2{Ks(Q)}"/Ke(Q).

In Table 2 are shown the exact probabilities (calculated from the finite series of
Theorem 4.3) of exceeding the significance points obtained from the approxi-
mation. The approximation is not of great accuracy, but may be usefully em-
ployed to supplement the accurate (but less suggestive) exact methods.

7. The one-way analysis of variance classification. Data, which it is desired
to test for group to group homogeneity of mean value, often are obtained in cir-
cumstances where group-to-group homogeneity of variance is not to be expected.
To quote one of many examples; in biological work where each observation is
the response observed with a particular animal and the subject of enquiry is the
comparison of the effects of treatments applied to the animal, the application of
the treatment itself would often be expected to cause extra variability, and the
extent of this extra variability would vary with the type and manner of treatment
applied.

The problem of the effect of unequal group variances was considered in the
case of the ¢ test by Welch [5]. He obtained approximate probabilities from which
it appeared that the effect was small when the groups were of equal size, but
larger when they were different in size. Later some exact probabilities for this
case were found by Hsu [9] and another investigation by a different approximate
method was made by Grunow [10]. Both these investigations confirmed Welch’s
results. Quensel [11] considered the one-way analysis of variance classification
more generally and obtained an approximate expression for the variance of the
F criterion when the group variances differed. He concluded that the test would
not be greatly affected if the group sizes were equal.

David and Johnson [12], [13], [14] have discussed the general problem of the
power function of analysis of variance criteria when the observations are dis-
tributed independently but do not necessarily follow the normal distribution
or have constant variance. As a special case they consider the one-way classifi-
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TABLE 3
Analysis of Variance. Group Variances Unequal

Source Deg. fr. Sum of squares Q Expectation of Q Null distribution of Q

Between k Tk k n k=1
F—11Qs = 2 n,(f,. — 3.2 2 — el 2 A,
groups Qs = ny(Fe. 7.) :51 neyi + tzl 1 N L} i A x2(1)

Within bone k 2 ko, .
groups N —kQw= tzl E (yei — 72 El (n; — 1) o} El ot x“(ny — 1)

cation in which the observations are normally distributed but the variances
differ from group to group. Their method is different from that given here and
is an approximate one. At the time of writing they have published few numerical
results and these [14] are confined to the case in which the sizes of the groups are
all equal. Confirming the results of Quensel, only slight changes in probability,
from those expected if the assumptions were true, have been found.

Using the theorems on quadratic forms discussed above, the required prob-
abilities may be found exactly, while the simple F approximation enables the
nature of the effects found to be presented in a readily appreciated form.

Suppose we have N = D %_;n, observations classified into k& groups. The
1th observation in the fth group is y.; , the mean of the {th column §,., and the
grand mean §.., and there are n, observations in the {th group. Then in the
usual analysis of variance, the quantities Q5 and @y shown in the third column
of Table 3 are calculated and are associated with degrees of freedom shown in
the second column of the table.

It is usually assumed that

(7.1) Yo = M + 26

where 7: = a + v; is the population mean for the ith group, Z’Z=1 Ny, = 0
and the 2z, are errors distributed normally and independently about zero with
the same variance o’. We retain all the assumptions except the last, and in-
stead of supposing the variance constant, we postulate that & (z%;) = o; where

a3, a5, -+, a5, -+ , ot are not necessarlly all equal. Then
(7-2) QB = ; ’nt(‘)’t + 2. — 2t..)2,
4 k k
, (7.3) &(Qs) = ; Ny + 8 g ny(z. — 2.)%
We notice that when the null hypothesis is true, @5 is a quadratic form in the
variables; Z, -+, Z., -, 2 . The matrix M = {m,,} of this form is evidently

N{6:n:N — nm,}, where 8, is the Kronecker delta. Also the variables follow
the multi-normal distribution with diagonal variance-covariance matrix V whose
tth element is o%/n, . It follows that the matrix U of Theorem 2.1 is

(7.4) U=VM = N 6,0'N — o’n,).
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Using (7.3) and Theorems 2.1 and 2.2, the expectations and null-distribution
of Qs are those shown in the last two columns of Table 3, A;, - -+ , M\— being
the latent roots of the matrix U. Again, from (7.1),

¢

(7.5) E Z (yn - Z/t = E i (2ei — 2:.)2-

t=1 =1 t=1 i=1

Also, since D%y (2 — 2,.)" is distributed independently of Z,. like ax’(ng — 1),
it follows that Qw is distributed like D - oix’ (n, — 1) independently of Qx .
We may now employ Theorem 4.1 to obtain the exact probability that the ratio
of mean squares will exceed the significance points of the tabled F' distribution,
for any chosen set of group variances. In addition, an approximate value of this
probability may be obtained using Theorem 6.1 with equations (2.5) and (2.6).
We find that the ratio of mean squares is distributed approx1mately as bF(W, h)
where

(7.6) b= N(/ — 1) > (V- m)a?/ft_‘, (ne — 1)ot,

(7.7) K = {; N — ng)a%}z/{; neoi): + N Z, (N = 2n)at},
{Zt: (ny — 1)«3}"’/{29 (e — 1)oi}.

A number of calculations of both exact and approximate probabilities are shown
in Table 4. It is seen that in the cases studied the approximation, although not

(7.8) h

TABLE 4

Probabilities of Exceeding 6% Point when Variances are Unequal in the One-Way Analysis of
Variance Table

G vari S Number of Observati
roup variances , umber of Observations p,&b:;,;,e%,l ,S :0) (‘ﬂz‘;;r;;g:{gpgoisu&atlng
I R : N in Groups Total 5% point ’
a a o s
i ? | Bl mo| w2 onz | na | we N Exact | Approx. b h’ h
|
1) 1,1]1 Any 15 5.00 1 2 12
2) 1,23 5/5!5 15 5.58 | 5.78 |1 1.85 | 10.29
3) 1123 31913 15 5.55| 57211 1.74 | 11.08
4) 1:2]|3 71513 15 9.25 | 9.57 | 1.28 | 1.86 | 10.00
5) 1123 315|7 15 4.03| 3.35(0.80 | 1.82| 10.89
(6) 1113 5(5(5 15 5871 5821 1.72 | 9.09
) 11113 71513 15 | 10.70 | 9.78 | 1.35 | 1.67 | 9.14
8) 1|13 9151 15 | 17.41 | 18.04 | 1.93 | 1.62 | 12.00
9) 1113 11519 15 1.31 1.73 1 0.60 | 1.85 | 10.32
(10) 1{1(1]1{1 Any 25 5.00 1 4 20
(11) 1(1|1{1(3|5|56|5|5{5] 25 7.42| 6.8 |1 3.21 | 15.08
(12) 1/1({1]1|3|9|5|5|5|1]| 25 |14.64|15.56|1.48|3.04 |20
. (13) 1(1]1]1{3|1|5]|5{5|9]| 25 2.49 | 2.60|0.73 | 3.40 | 15.43
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of great accuracy, faithfully indicates the order and direction of the effects and
enables a clear idea to be gained of the general effects to be expected.

8. Equal groups. For equal groups the comparison of mean squares is unbiased
in the sense that the expectations of the mean squares are equal when the null
hypothesis is true. In fact

8(Qs)/(k — 1) = 8@Qw)/(N — k) =3 where " = (3 o1)/k.

The mean squares are distributed independently but their ratio does not follow
the distribution F(k — 1, N — k). Instead, applying the approximation, we find
after a little reduction of (7.7) and (7.8) that the ratio of mean squares is dis-
tributed approximately as F{(k — 1)¢/, (N — k)e} where ¢ and ¢, the factors
by which the degrees of freedom are reduced, are given by
— -1 :

®8.1) € = {1 + ']-z—_—i‘ c”> , e=(1+¢)7,
and c is the coefficient of variation of the variances. That is to say, ¢ is the vari-
ance of the variances divided by the square of the mean variance &°:

(82) ¢ = l; (e} — &)/ @)%

Since, when the variances are unequal, ¢’ and ¢ are less than unity, one would
expect that the significance of effects would be somewhat overestimated. Com-
parison in Table 4, of rows (2) and (6) with (1), and of row (11) with row (10),
confirms this, and shows that for the differences in variance considered, only.
moderate discrepancies in probability oceur.

Now the ¢”’s are essentially positive and it is easily seen that

(8.3) 0 =k-1,

and if the variances range from a lower value ¢’ to an upper value ac’, then the
largest possible value for ¢ is attained when & — 1 of the variances are equal to
" and the remaining one is equal to ac’, and that in this case

(8.4) d=®k—-1)(a —1)/(a — 1+ k)

TABLE 5
Values of c?, ¢’ and e
_ Largest Variance 1s @ Times Larger than Each of the Remaining Variances

k 3 groups 6 groups 10 groups

a 3 6 10 3 6 10 3 6 10

c 0.32 0.78 1.12 0.31 1.03 1.80 0.25 1.00 2.02

¢ 0.86 0.72 0.64 0.80 0.55 0.41 0.82 0.52 0.36
‘e 0.76 0.56 0.47 0.76 0.50 0.36 0.80 0.50 0.33
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Values for ¢* greater than one or at most two probably would be extremely
rare in practice, although from the inequality (8.3) it is seen that values of ¢’
as great as k — 1, and hence values of ¢ as small as 1/k, could occur. Some ides
of the discrepancy arising in a very unfavorable case is obtained by considering
the example k = 7,7, = ny = --- = n; = 3, a = 10; the exact probability of
exceeding the assumed 5 per cent point is then 12.0 per cent.

9. Unequal groups. It will be observed that the more serious discrepancies in
Table 4 arise when the groups are unequal. This is because with unequal groups
the comparison of mean squares is usually biased. If we write ¢* for the weighted
mean variance v/ > v, and & for the unweighted mean variance Z a/k,
where the weight », = n; — 1 is the number of degrees of freedom in the fth
group then the expression (7.6) for the bias coefficient reduces to the form

_ 1 —1/N [5 .
The bias is seen to depend upon the ratio of the unweighted and weighted means
of the variances.

In this connection it is of interest to consider the examples of rows (2), (3),
(4) and (5) in Table 4. In each case the total number of observations is 15 and
the unweighted mean variance is 2. In (2) the numbers in the groups are equal,
the weighted and unweighted means agree, and there is no bias, the discrepancy
in probability being small. In (3) the numbers are unequal but the distribution is
symmetrical, the weighted and unweighted means again agree, and again the
discrepancy is small and of the same order as that found before. In (4) the
weighted mean variance of 1.67 is lower than the unweighted mean variance of
2, causing an upward bias and a marked discrepancy in the direction of over-
estimation of significance. In (5) on the other hand, the weighted mean of 2.33
exceeds 2, causing a downward bias corresponding with a discrepancy in prob-
ability resulting in underestimation of significance.

We have seen that in the case of equal groups, the discrepancy, as measured by
a reduction in the degrees of freedom of the approximating F distribution, is
dependent on the spread of the distribution of variances as measured by the
roefficient of variation. The feature of the distribution of variances which affects
the bias, on the other hand, is related to the “skewness” of that distribution
as measured by the ratio of weighted and unweighted means.

The factors which multiply the degrees of freedom in the approximation may
be written inithis case of unequal groups

9.2) ¢ =0+ {1, e=01+7,
where c()) is the coefficient of variation of the \’s and ¢ is the weighted coeffi-

cient of variation of the variances. That is to say, ¢ is the weighted variance of

the variances divided by the weighted mean variance ¢*:
k

9.3 &= =B ut — )/

te=al
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The variation among the A’s will be similar although somewhat less in extent
than the variation among the o3’s so that, as before, the coefficients ¢ and e
will depend upon the spread of the o7’s.

Study of Table 4, particularly rows (4), (7), (8), (9), (12), and (13), shows
that quite large discrepancies can qeccur when the groups are unequal for even
moderate variations of variance. Furthermore, it is clear that these discrepan-
cies will persist in larger samples, for as the sample sizes are increased propor-
tionately the bias coefficient will tend to the fixed limit

(9.4) 1+ (k/k — 1) {§*/é® — 1}.
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