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Summary. The usual test that a sample comes from a distribution of given
form is performed by counting the number of observations falling into specified
cells and applying the x* test to these frequencies. In estimating the parameters
for this test, one may use the maximum likelihood (or equivalent) estimate
based (1) on the cell frequencies, or (2) on the original observations. This paper
shows that in (2), unlike the well known result for (1), the test statistic does
not have a limiting x’-distribution, but that it is stochastically larger than
would be expected under the x* theory. The limiting distribution is obtained
and some examples are computed. These indicate that the error is not serious
in the case of fitting a Poisson distribution, but may be so for the fitting of a
normal.

1. Introduction. When using x? for testing that a sample comes from a dis-
tribution of specified functional form such as a Poisson or normal distribution,
the problem arises as to what estimates of the population parameters to use.
If only the numbers m; of observations falling into the ¢th of the & cells are
available, there is no difficulty. Let p; (z = 1, - - - , k) denote the probability of
an observation falling into the sth cell, and let $; be any best asymptotically
normal (b.a.n.) estimate of p; such as the minimum x* or maximum likelihood
estimate. Then it is known [1], [2] that under suitable regularity conditions the
asymptotic distribution of
1) R =3 (mi — mp)’/np;
is that of x* with ¥ — s — 1 degrees of freedom, where s is the number of (in-
dependent) population parameters being estimated.

If, however, the original observations z; , - - - , x, are available, one is tempted
to use more efficient estimates, such as the maximum likelihood estimates p;
based on all the data. One may reasonably expect this procedure to provide
more powerful tests than those based only on the m; ; at the same time the
estimates usually are simpler and easier to obtain. This is in fact the procedure
recommended in many textbooks, particularly for the fitting of Poisson dis-
tributions, either as an approximation to the one with known theory described
above, or more often without comment.

It is the purpose of the present paper to obtain the distribution of
(2) R =3 (mi — nps)’/npi,
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which differs from that of R. If we let

3) R =3 (m; — np)*/np:,

which has a limiting x’-distribution with & — 1 degrees of freedom, we shall
show that the limiting distribution of R lies between those of B and of R. More
specifically, we shall show in Section 3 that under suitable regularity conditions
we have

TueoreM 1. The asymptotic distribution of R is that of

k—s—1 k~1
4) 2 it 2 Nl
t=1 =k—8
where the y; are independently normally distributed with mean zero and unit vari-
ance, and the \; are between 0 and 1 and may depend on the s parameters 6, , -« - ,
05 .

This result indicates that the recommended procedure of rejecting the hy-
pothesis of goodness of fit when R > €, where C is obtained from the x*-dis-
tribution with k — s — 1 degrees of freedom, will lead to a probability of re-
jection which, when the hypotheses is true, is greater than the desired level of
significance. However, a numerical investigation of a few special cases indicates
that, at least in the Poisson problem, this excess of probability of type I error
will be so small as not to be serious. The situation appears to be not quite so
favorable in the normal case.

Throughout this paper, the notation and background material given in Sec-
tion 2 of the preceding paper [3] will be used.

2. Example. Before proceeding to the main result, let us treat the special
example where the observations are independently and normally distributed
with unknown mean and variance 1, and where the cells are (— «, 0) and (0,
). In this case it is obvious that £ = 0. However,

Z (m; — np))® _ (my — npy)®

np; NP1 Pa
where
R SR - I
ml) = f_ v dy = \/2 dy
pe(n) = 1 — pa(p), i = Pi(ﬂ_?)-
We have
R —n Dy — 2 Y
A= e (M M) - G e

where ¢ = (my; — npy)/v/nand v = \/n (p1 — p1). Using the first order Tay-
lor expansion of pi(£) about pi(u), we have

vy = — \/ﬁ (T — w) e—lﬂlz/\/z_ﬂ' + 0,(1) = v + 0,(1)
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where ¥ = —A/n@E — p) ¢*/v/2r. Let gx) = 1 for z < 0, and = 0
otherwise. The central limit theorem tells us that, since

(ml ) na':) = ai—l [g(xa): xa]y dGO (6: "/) = N(O: 2)

where N(0, =) denotes the normal distribution with mean 0 and covariance
matrix Z given by
P12 6‘,‘2/ 27
Z = . \ .
e 2r & /2m

do (e, v) = N(0, 2), do(e — v) = N(O, prp2 — e*"2/27r)

and in particular ¢ — » = 0,(1). It follows that dw (R) = d(\y®), where d(y) =
N@O,1)andA =1 —¢* /21rp1p2 < 1. The fact that A = 0 follows from the fact
that = is nonnegative definite.

NotE. A general proof of Theorem 1 cannot be based solely on the fact that
1 is a better estimate of p, than f, is. Suppose, in fact that we use py = p1(2 —
) as our estimate of p; . In the event that u = 1, p} has the same distribution
as 91 . The above argument repeated for R* shows that » would be replaced by
—vandAby A\* =1+ 3¢ * 2pips -

3. The general case. We shall now prove Theorem 1 under the following
regularity conditions:

(i) The pi(6) satisfy the condition on pages 426-427 of Cramér’s Mathe-
matical Methods of Statistics.

(i) Let z = (21, - - - , ) where z; = 1 if the observation falls in the sth cell
and 0 otherwise. Let f(z, 6) = Hpi‘, and let us assume that the value w of our
chance variable z determines z, and that the density of z is given by

F*w, 9) = I1 pi* g(wlz, 6)

where g is the conditional density of z given z. Then we assume that f* satisfies
the condition ® of the preceding paper [3].

Hence

Let
(5) mi — nps = Vnpie:
(6) n(B: — p) = Vaps:,
@ n(p; — pi) = \/@ﬁi-
Then
8) R=2 e =¢e
) R =2 (a«— )11+ 0p(1)],

A

(10) R =2 (e — )" [1 + 0p(1)]
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We shall first compute #; to show that R is asymptotically a sum of squares
of the components of a normally distributed chance variable, and then do the
same for B. We have

3 log f(z, 0) _ <~z dps

96, =T
The information matrix referred to in Section 2 of [3] is given by
1 ap, 9p,
11 = D'D
( ) | ;1 Pr 00; 60]
where
1 6p,
12 D = = =
(12) H \/Pi 99;

The corresponding A vector A has elements

I 1 k m, 0pr _ k m,—np,{i;_)_,

P = - — ==

ni=ip. 00, =L np. 96
Therefore
(13) A = (1/A/n)D’e
and
;= \/n% Z_; Vn; — \/IE g‘% + 0,(1),
7 = DVn — 6) + 0,(1) = DJ'D'e — 0,(1).
Finally
(14) B = (Fe)(Fe) + 0,(1)
where
(15) F=1-DJ'D.
Now
(16) d log f*(w, ) _ Z’”: 2; 9p; n 3 log g(w |z, 6) .

a4; i=1D; 00; 96;
Since the conditional expectation, given z, of

[ - ii%] (9 logg(w|z,0)
=i p: 06, 36,

is zero, we have
(17) J =J+ J*
(18) A=A+ A%
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where
* d log g(z | 2, 0) _alogg(xlz,ﬂ)J
(19) J “E[ 90; 36; ’
x _ 1~ alogg(z|2?,0)
(20) 4i = n gi 90;
and 2® is the ath observation on z. Now
C Di — pi A 1 dp;
b=V = 3 /b — 6;) ——= 2 4 o, (D),
'\/E): J 2 ‘\/p, 80] 4

(21) $ = DA'n(6 — 6) + 0,(1).

? = DT + JH 7 (D'e + VnAd*) + o,(1).
Hence
(22) R = (Fe+ Gn)(Fe+ Gn) + 0,(1)

where 7 = \/nAd* while # = I — D(J 4+ J® D' and G = D(J + J*™.
The asymptotic distributions of R, B, and R are those of ¢¢, (Fe)’ (Fe), and
(Pe + Gn)'(Fe + @n), respectively. To find these distributions we must know
the asymptotic distribution of (e, 7). Applying the central limit theorem to

[z A 1[0 XN alogg(wrz,e»]
1y <2 y Rk y 601 y , 608
we see that
I—gq¢ O
o aeoeafa (1 )

where ¢ is the vector whose ith component is \/ p: . (Note that D’q = 0.)

From one of the Mann-Wald results it follows that the asymptotic distribu-
tions we desire are those obtained by assuming that (¢, #) actually have the
above joint normal distribution. That is we assume that

d(e) = N0, 2), d(Fe)=N@©,2), dFe+ Gn) = N(©,35)

where

(24) 2=1-4q¢

(25) S=I—-gqd —DJ'D

(26) S=1—-q¢ —DJ +J%D.

If for symmetric matrices we write K = L whenever K — L is nonnegative
definite, then

(27) b s.

v

p>

Y
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We digress to present
Lemma 1. If d(y) = N(0, U) where the characteristic roots of U are \;, A,
ey, e N then

d(y'y) = d(Z \el)

where d(z) = N(0, I).

Proor. Expressing U in canonical form, we have U = PAP’, where P is
orthogonal and A is the diagonal matrix whose diagonal elements are the ;.
Since U is nonnegative definite, the \; are nonnegative and we may define A? in
the obvious way. Let d(z) = N(0, I) and y* = PA%. Then d(y*) = N(0, U)
and d(y*'y*) = d(y'y). But

y¥y* = ZAP'PAR = ZAz

and the lemma follows.

As a consequence of this lemma, it follows that the distributions of R R, and
R are those of 2/Az, 2’Az, and 2’Az where A, K, A are the diagonal matrices of
characteristic values corresponding to R, R, and R, respectively. From the
known results on R and R it follows that = has for characteristic roots & — 1
ones and 1 zero, while £ has for characteristic roots t — s — 1 ones and s + 1
zeros. Since = = £ = $, it follows that 2 has for characteristic roots: k — s —
1 ones, 1 zero, and s roots A1, A2, + -+, A, between zero and one. Qur Theorem
1 follows.

REMARrk. A direct proof of the above-mentioned properties of the charac-
teristic roots of £ and £ may be given by showing that ¢g¢’ and DJ™ D’ are
projection operators on orthogonal manifolds of dimensions 1 and s respectively,
that is,

(@) aq) = ¢ pdd = qof
(DJ'DYDJI D) = DJ'JI D = DI D’
(DI D) (gq) = 0.

The roots A;, -+, A\; which determine the distribution of the test criterion
R can be obtained from

TrEOREM 2. If u; = 1 — \;, then the u; are the characteristic roots of the de-
terminantal equation |J — pJ| = 0.

Proor. We shall use the fact that if the vectors ¢, --- , £ form an ortho-
normal basis of k-dimensional space, then the matrix Z rdd: has the charac-
teristic roots 7y, - -, 7, . This implies, in particular, that Z td: is the identity
matrix.

Given J and J, there exists a nonsingular (s x s) matrix S and a diagonal
matrix M such that

Jt=88, J'=8SMs
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where the diagonal elements of M are the roots of | J7" — uJ 7| = 0 and hence
of | J — uJ | = 0, and are all between 0 and 1, since J < J.
If wp, ---, u, are the columns of DS,

DJT'D' = (DS)(DS) = 2 uas .
Since (DS)’(DS) = §'JS = I and D'q = 0, it follows that g, us, - - , u, are

mutually orthogonal unit vectors. If we let o1, «+ -, v be a complementary
set of orthogonal unit vectors we have

$=1—q¢ —DSMSD' =1 — qf — 2 miususi
=

k—s—1 3

2 vy + 2 (1 — pusui.
=1 =1

It follows that the characteristic roots of £ consist of ¥ — s — 1 ones, one zero,
and\; =1 — py;fori=1,---,s.

4. Some Numerical Examples. By using the maximum likelihood estimates
based on the full sample, one is operating at a higher significance level than the
one stated. One can, however, on the basis of the above results, make an ad-
justment which asymptotically provides the correct value.

Given 6, let C(6) be such that

k—s—1 k=1
P{ vi+ 20 MOy = C(B)} = a.
=1 t=k—s

Clearly C(6) is a continuous function of 6 and hence C(f) — C(6) in probability
as n — . It follows that the probability of

k—s—1 k—1

2;1 v+ ‘=Zk:_ W OTHERE()

tends to @ as n — . Here C(f) can be computed, at least in theory, to an
arbitrary degree of accuracy using the results of Pitman and Robbins [4].

Theoretically, the error committed by using the maximum likelihood esti-
mates based on the full sample without:an adjustment can be quite serious in
the case of a small number of cells. For example, if s = 1 and A(6) is close to 1,
we have essentially one extra degree of freedom, and when the number % of cells
is small so that k — 2 = 1, 2 or 3, the actual probability «* of type I error
would vary from 15 per cent to 10 per cent when the level of significance is
supposed to be a=25 per cent.

In practice, however, at least for fitting a Poisson distribution, the error
does not appear to be so serious. Some values of A(6) and the true probability
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of rejection o*(6) in the Poisson case are given below for groupings z = 0, 1,
22and z = 0, 1, 2, = 3, and level of significance supposed to be & = .05.

T 0,1, =22 0,1,2, 23

6 1 ‘ 2 2 3
\o) |2 L35 14 32
o*6) | .05 | 067 055 | .065

As a second example, consider the fitting of a normal distribution with mean
¢ and variance ¢°, both unknown. For the case of the four cells (—», —1),
(—1,0), (0, 1), (1, ) and two combinations of { and ¢ we obtain the following
values for the two roots A; and A, :

¢ =0, c=25 M=.80, A=.20
¢ =.5 c=20; M=.74, A =.15.
The probability «* is then given by
o* = P{U 4+ MV + LW = C.}

where U, V, W are x* variables with 1 degree of freedom and C, is such that
P{U =z C,} = a. As a lower bound of o* in the first case we have computed
P{U + 8V = C} = .12. This indicates that in the normal case the use of
maximum likelihood estimates in x* may lead to a more serious underestimate
of the probability of type I error.
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