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1. Introduction and Summary. Consider a random sample of size n taken from
a continuous distribution f(z). Let another random sample, independent of the
first sample and also of size n, be drawn from the same population. Let U be
the random variable associated with the number of values in the second sample
which exceed the rth smallest value in the first sample. Similarly let V' be the
random variable associated with the number of values in the second sample
which exceed the sth largest value in the first sample.” Due to the fact that the
rth smallest value in a sample of size n is at the same time the sth largest value

in the sample with s = n — r 4 1, it follows that

1) Pr (U? = z) = Pr (V] = x),
s=n—r-+1; r=12 --,n; z=0,1,2,
The probability distribution of Uy (and hence of V7) is given by:
@) Pr (U7 =2) = (")) = $Pastr-101 Prriaia/Prnn
2=0,1,2---,n

Formula (2) can be proved by combinatorial methods; details are omitted. An
alternative formula, derived in another way [3], is

(2a) Pr(Ur = z) = 35D/ (G55e) = 3Pa1r1Pas/Poninrta -

In formulae (2) and (2a), Pn.- = (3)"(). Formulae in terms of P, . are particu-
larly convenient for hand computation, since one can use the extensive tables of
the binomial probability distribution published by the National Bureau of

Standards.

If the values of Pr (U} £ z),forz =0,1,2, -+ ,n — L,r = 1,2, «
are written (for fixed n) in matrixform, one notes certain useful symmetries, which
can be expressed by the identities

3) Pr(Ur £z)=Pr(Ugunsr-—1),

4) Pr (U? sz2)+Pr(UnsppuSn—z—=1)=1

If one takes = n — r in (4) and uses the relation (3), it is readily verified that
(5) Pr(Ur sn—r)=1
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TABLE 2
Values of Pr(U: £ z)

r z2=0 1 2 3 4

1 .02397 .0238 .0833 . 2222 .5000
2 .0238 .1032 .2619 .5000 1778
3 .0833 .2619 .5000 7381 .9167
4 .2222 .5000 .7381 .8968 .9762
5 .5000 7778 L9167 .9762 .92603

Proofs® of (3), (4), and (5) can be obtained by using the results of pages 257-258
of [3]. Because of these symmetries, the complete matrix (for any fixed r) can
be constructed if one knows only the quantities, Pr (U; < 2), r = 1(1)[n/2],
£=r—1,r,7r41 .-, n —r — 1. In Table 1 these values are given® for
n = 2(1)15(5)20. To see how the complete matrix is obtained from Table 1, it
is interesting to verify, using (3), (4), and (5), that the complete matrix, in the
special case n = 5, is given by Table 2.

A somewhat different, but related, exceedance problem is to take two random
samples of size n from a continuous distribution f(z). Let us for convenience
attach the letter x to one of the samples and the letter ¥ to the other sample.
Further let z.,. and y.,, be respectively the rth smallest observations in each of
the samples. Let us define 2, , = max (Z,,n , Yr,n). If 2r,n = Z, . , count the number
of y’s which are = z,,, ;if 2,,» = ¥ » , count the number of 2’s which are = ¥, , .
Denoting the number of exceedances as Wy, it is readily seen from (1) that the
probability distribution of W, is given by

(6) Pr (W: = x) = 2(n—:t;—1)(n—;+z) / (3!"): T = 0: 1, 2; e, — T
It is evident from the definition that,
@ Pr(W; sz) =1, zzn—r

Clearly one can find the values of Pr (W < z) by using Table 1. Thus, for ex-
ample, in the special case n = 5 one obtains Table 3.

2. Applications of exceedance theory. There are three principal uses of ex-
ceedance theory. These are:

(a) Floods and droughts. This theory was used by H. A. Thomas, Jr. [6] in
making predictions about the recurrences of floods and droughts in the future
on the basis of what is known from past data. In recent papers by Chow [1], [2],
the interested reader will find further work in this direction.

2 We wish to acknowledge with thanks a communication from Dr. E. J. Gumbel on this
point.

3 In Wayne University Technical Report No. 6 (July 1953) values were given for n =
2(1)20(5)50. We have also considered the practically important case where the two samples
ma¥ be of unequal size. Tables for selected pairs of unequal values of the sample size will
be available in the near future.
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TABLE 3

Pr(We < 2)
r =0 1 2 3 4
1 .02794 .0476 .1667 4444 1.0000
2 .0476 .2064 .5238 1.0000
3 .1667 .5238 1.0000
4 .4444 1.0000
5 1.0000

(b) Non-parametric tests for slippage. The functions Uy , V', and W can be
used to give two-sample nonparametric tests for slippage of the mean. There are
close connections between the results in this paper and recent tests for slippage
by Mosteller and Tukey [4] and [5].

(¢) Life testing. It is a characteristic feature of life tests that data become
available in order of size. Thus it becomes very natural to apply exceedance
theory, which is based purely on order statistics. By so doing it is possible in
many cases to shorten both the average time and average number of items de-
stroyed in order to reach a decision as to whether or not the items in one popula-
tion are in some sense superior to the items in another population.

3. Numerical examples.

ExampLE 1. What is the probability that the third largest flood during the
past 20 years will be exceeded at least once during the next 20 years? Answer.
The probability is

p=1—Pr (V¥ =0)=1—Pr(Uis =0) =1— .1154 = .8846.

ExampLE 2. During a period of 20 years the lowest observed annual rainfall
in a certain locality was 8.6 inches. What is the probability that in the next 20
years at least two of the years will have rainfall < 8.6 inches? Answer. The
probability is p = Pr (U’ < 18) = .2436.

ExampLE 3. (one-sided test): We are now interested in making a choice be-
tween two lots A and B. In particular we are interested in some characteristic
such as life or strength, where data become available in order of magnitude. Let
it be known a priori that the probability density function associated with lot B
is either the same as that of lot A or is displaced to the left (e.g., is inferior).
Put in another way, we are thinking of a case where the only relevant parameter
is some measure of slippage. We wish to test the hypothesis H, of no displace-
ment against the alternative H; that B is displaced to the left of A. The Type I
error is taken to be < .05. Ten items are drawn from each of the lots and placed
on life test. It is decided in advance that a decision will be based on how many
failures occur in the sample from B before the second failure occurs in the sample

»from A. The two samples are put on test simultaneously and give the pattern
bbbabbb - - -, where a denotes a failure in the sample drawn from 4, b denotes a
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failure in the sample drawn from B. The experiment is stopped at the seventh
failure with rejection of the null hypothesis, because Pr (U3’ < 4) = .0286 < .05.
If, however, we had obtained a pattern like babba- - -, we would have stopped
experimentation after the fifth failure with the acceptance of H, .

ExampLE 4. (two-sided test): Given two lots A and B, we wish to test the
null hypothesis that the life distributions of A and B are the same against the
alternative that they are different. As in Example 3, let 10 items be drawn at
random from each of the two lots and placed on life test. It is decided in advance
that our decision will be based on the statistic W3'. If, for example, the failure
pattern observed is aaaaabaa - - -, the experiment will be terminated on the eighth
trial with rejection of the null hypothesis (on the .05 level of significance). This
is because Pr (W3® < 3) = .0198. On the other hand a pattern like babba- - -
would lead to acceptance of the null hypothesis on thg fifth trial.

4. Discussion. Fairly extensive random sampling experiments have shown
that the statistics W1i°, W3, and W3’ are more effective than the run test, and
somewhat less effective than the Wilcoxon rank test, for detecting slippage of
the mean in the case where the underlying distributions are normal, all with the
same variance. Since the improvement in power obtained by using W2’ or W3°
rather than W3° is minor in this case, there are sound practical reasons for pre-
ferring W1 . Decisions based on this statistic can be made at a great saving in
average time to decision, as well as average number of items destroyed. It should
be noted in Example 4 that if decisions were based on W1’ , we would have trun-
cated testing on the fifth trial with the rejection of Hy , since Pr (W1’ < 5) =
.0325.

A detailed discussion of the points raised in the last paragraph will appear
elsewhere.

6. Acknowledgement. I wish to thank John Lay for his work in computing
the tables.
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