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1. Summary. This paper is a follow-up of a previous paper [1], the full implica-
tions of some of the results there being brought out here in terms that are physi-
cally more meaningful. Two cases of simultaneous confidence bounds, I and II,
are given, in each case with a confidence coefficient which is to be greater than
or equal to a preassigned level.

Case I relates to the characteristic roots of = and Z;=7°, where = stands for
the dispersion matrix of one p-variate and Z; and Z; for the dispersion matrices
of two p-variate normal populations. Case II relates to a (» 4+ ¢)-variate normal
population (p = ¢), for which the matrix of regression of the p-set on the ¢-set
isdefined in a natural manner. This matrix is denoted by 8(p x q) and simultane-
ous confidence bounds are given on all bilinear compounds of this matrix (with
arbitrary coefficient vectors of unit modulus).

Confidence bounds on the characteristic roots of = and Z,2;' are given
respectively by (3.1.3) and (3.2.8). Confidence bounds on the bilinear compounds
‘of the regression matrix 8 are given by (4.7).

2. Introduction. Let us denote by A’ the transpose of a matrix A, and shorten
positive definite into p.d. and positive semidefinite into p.s.d. Also let cmin(M)
and cmax(M) denote the smallest and the largest characteristic root of a p.d.
matrix M. A p x p diagonal matrix whose diagonal elements are, say, ¢,
C2, +++, cp Will be denoted by D.(p x p) or simply by D. . A p x p unit matrix
will be denoted by I(p).

2.1. Statement and reduction of the problem for the case of = and Z,Z3". We
take over from the previous paper [1] the two confidence statements (5.1.5) and
(5.2.4) and renumber them as

(2.1.1) a'a61a(p, n) < o'(Dy+/snT’STDy/6)e = a'absza(p, 1),
(2.12)  (M2/n1)01a(p, M1, )b’ Sob < b'(uDyv/ep~ Sy’ Diyv/5u")b
= (n2/11)0za(p, M1 , 12)b"Sab.

These statements are supposed to hold respectively for all nonnull a(p x 1) and
b(p x 1), and each with a confidence coefficient 1 — o.

In (2.1.1), S stands for the sample dispersion matrix, n -+ 1 for the sample
size, and the ©’s for the characteristic roots of Z. Here T is an orthogonal matrix
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given by £ = I'DeI"”, and 61.(p, n) and 6:,(p, n) are subject only to the restric-
tion

(2.1.3) Plla S 0, S 0, < 00,|2) =1 — q

where 6; and 6, are the smallest and the largest characteristic roots of nS. Other-
wise 6, and 6,, are, for the moment, left flexible, unhke what was done in the
previous paper [1].

In (2.1.2), S;and S, stand for the two sample dispersion matrices, n; + 1
and 7, + 1 for the two sample sizes, and the ©’s for the characteristic roots of
223", Here p is a nonsingular matrix given by =, = uDep’ and Z; = uu’, while
612(p, M1, M2) and 024(P, 11, n2) are subject only to the restriction

(21.4) P(O,a é 01 é 0,, = 020, | 21 = 22) 1 - Q,

where 6; and 6, are the smallest and the largest characteristic roots of (n1/n2)S;S%".
Otherwise 6. and 6., are, for the moment, left free, unlike the development of
the previous paper [1].

Let us denote by ¢(M) any characteristic root of the matrix M. Then it is well
known that the statements (2.1.1) and (2.1.2) are respectively equivalent to

(2.1.5)  (1/n)61a(p, n) = all ¢(Dy+/8I’STDyvs) = (1/7)824(p, 1),
(2.1.6) (n2/11)012(p, M1, M2) £ all c(uDyv/or " S’ Dy~/ou’ Sz")
S (no/m)02a(p, M1, Ma2)-

We notice that ©; = ¢,(2) in (2.1.5) and = ¢,(Z:27") in (2.1.6), with i =1, -- -,
p. It is now our purpose to obtain confidence bounds on 8.’s (or their functions)
in terms of ¢i(S)’s (or their functions) in the case of (2.1.5), and in terms of
¢:(S1) and ¢1(Sz) (or their functions) in the case of (2.1.6). For ¢i(Z)’s the con-
fidence bounds are given by (3.1.3) and (3.1.4), and for ¢;(Z.2% N by (3.2.8).

2.2. Statement and reduction of the problem for the case-of the regression matriz 3.
We recall the confidence statement ([1], (6.1.4)), with a confidence coefficient

1 — a:

_ taln — 2) 2 8t < ta(n — 2)
(22.1) b s V1=r S S6= A N \/1 3,
where 8 (which is now a scalar) stands for the population regression of x; on x;
(where z; and x, have a bivariate normal distribution), b for the sample regression
(in a random sample of size n = 3), r for the sample correlation, s; and s, for the
two sample standard deviations, and £, for the upper 3a-point of the f-distribu-
tion with D.F. (n — 2).
We also note that

(2.22) b= 7’81/82 = 7'8182/82 , B = po’ufz/o’% ’

where p, o1, and o stand respectively for the population correlation coefficient
and the two standard deviations.
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We now start ([1], Sec. 6.2) with a random sample of size n, with n > p + ¢
and p £ ¢, from a (p + ¢)-variate normal population. Next we reduce for the

means and set
S Y.
(n— 1) < i ) = < ) ¥: vy,
S12 Sa Y,

where Su, Sz, and Sy, stand respectively for the sample dispersion submatrix
of the p-set, that of the ¢-set, and that between the p-set and the g-set. Here
Y, and Y, have p.d.f. proportional to

u2e\" /T
(223) exp [— St <§ g > <Y> . Y;)].

We next recall ([1], Sec. 6.2) that there exist nonsingular u:(p x p) and us(g x q)
such that

(224) Zulpxp) =mpx Pl xp), Zalgxq) = plg x Qus(g x q),
Zupx q) = m@xp)Dyvs Oluag x 9),
where D,/ is a p x p matrix and the ©’s are the characteristic roots (all non-

negative) of the matrix =17 =122 =3, (i.e., the squares of the population canonical
correlations between the p-set and the ¢-set). As in ([1], Sec. 6.2), we have

<En 212>—l [(ﬂl 0>, I.( p). . : (P \{6 (.)) <ﬂ1 0>]'1
S o 0 ue (Da/é) : I(q) 0 Il;
[(m o)(pm - Dys 0)> D;/“ 20 <n; 0)]
= . [ ] . .o . . . ‘\/_ . ,
025 0w\ 0 Il ( 09) 10 |\o

w0\ [ Pvmes o 0 <D\/Fu—-e) - ~(Dy/575 0)
‘,(D\/é(l)u_—m): I(g) 0 - Il

<#Tl 0 >
X a2 )
0 M2

r—1

0 M2
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Going back to (2.2.3) and using the result that tr (AB) = tr (BA), we have

Zu Ze\7 [T\,
tr{ (Y1Y9)
212 2o Y,

Dyirimey + ~(Dverize 0\/ui® O \/Y: ,
= r . . . . . . . . . . . _ (Yl Yz)
(2.2.6) 0 . I(g) 0 w2 2
x<y;~1 Y G <z1 i
—\ . =1ir ’
o W)\ () 10 | T e
where

227) Z = viameui Y1 — Dverames Owz'Ya, 2o = pz'Ys.

Thus it is easy to check from (2.2.3), (2.2.6), and (2.2.7) that (Z:, Z,) have a
p.d.f. proportional to

(2.2.8) exp {-—% tr (j) A Z;)}.

Consider now, for any two arbitrary nonnull vectors g:(p x 1) and go(¢ x 1) and
for a fixed positive 6y , the statement

(@121 Z202)° "
(@121 Z101) (9222 Z202) ~

This can be written in terms of Y; and Y, as

(22.9)

[¢1{Dyire w1 Y1 Yaps - — (Dyeraey Oz YeYap jaal’ _ "
= b

(2.2.10) (aopz Yo Yous  a2)(01QQ'ay)

where

(22.11) Q = Dyrom k' Y1 = Dvars 0) wa' Vs
Now putting

(2.2.12) bi(l x p) = GDvir=ermt’,  ba(lx g) = gui

and using (2.2.4), we check that (2.2.10) reduces to

[b1(Y: Y2 — BY, Y3)bal” < 6,
(b2 Y3 Yaballbr(Yy — BY2) (Y1 = Y2 )il —

or

[24(S1s — Bt 3
(b2 S22b2)[b1(Su — Sup’ — BS1 + BS=A)b] —

6o,

, (22.13)
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where
(2.2.14) Bpx q) = m(Dyve Oz’ = 3% .

As defined by (2.2.14), 8 can be appropriately called the matrix of population
regression of the p-set on the ¢-set. It is the only set of population parameters
that occurs in statement (2.2.13). '

For an p x p matrix B, let tr,(B), for s = 1, --- , p, stand for the sum of all
sth order principal minors of B. It is well known that

y4
(2.3.1) f/ra(B) = . . E cil(B)c‘l'z(B)' * 'cig(B))
Tppigate e phig=l
and, in particular, that tr;(B) = 3 ci(B) = X b, and tr,(B) = [Jci(B) = B.
Also well known is that :

(2.3.2) c[A(p x p)B(p x p)] = c[B(p x p)A(p x p)]

Furthermore we recall

LemMa A. The product of two p.d. mairices is p.d. If A(p x ¢) [rank r £ min
(p, )] is a matrix with real elements, then AA’ is p.s.d. of rank r.

We have also [2] that

(233) cmin(A) cmin(B) é alll C(AB) .é cmax(A) cmax(B),

where A and B are two symmetric matrices of which one is p.d. and the other is
at least p.s.d. The generalization to the product of a finite number of matrices
is obvious [2]. We also take over from [2] the result that

(2.3.4) Cmin(MMl) = 02(M) é Cmax(MM,))

where M is a square matrix with real characteristic roots. From (2.3.4) it is
easy to see, by replacing A by AB™" (if B is nonsingular), that

(2.3.5) Cnin(AB™") tmin(B) = all ¢(4) = Cmax(AB™") Cuax(B).

Next, we establish
LemMa B. If dy < all ((AB™) £ da, then

(dl)t trt(B) = trt(A) = (d2)t tr‘(B)’ t= 1’ Y )

where A and B aretwo p x p mairices and dy and d; any two positive numbers such
that dy < ds .

The conclusion is a necessary (though not a sufficient) condition for the hy-
pothesis.

Proor. It is easy to check that the statement d; < all ¢(AB™") is equivalent
to the statement “A-diB is p.d.” which again is equivalent to the statement
“A, — dyB, , fort = 1,2, --- , p,isp.d.”, where A, — diB, is a submatrix formed
,by the intersection of any ¢ rows of A — d,B with ¢ columns bearing the same num-
bers. The last statement again is equivalent to the statement di < all ¢(4.B7").
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Now, if all ¢(4.B7") > di, one consequence is that

t
(286) I (4, BT > (@), that s :gtll > (@), thatis, |AdJ> (@)'|Bi.
f= |

For a given ¢, summing over different possible submatrices we have
(2.3.7) tr.d > (dn)' tr.B.

Using the same kind of argument for the other half of the inequality and remem-
bering that { = 1,2, -+ -, p, and combining, we have the result that

(238) if di < allc(AB™) < dy, then (di)’ tri(B) < tri(4) < (do)’ tre(B),
t=1,---,p.

By a slight rephrasing (which is obviously permissible here) we can obtain Lemma
B) from (2.3.8). We recall the three following well known lemmas, repeatedly
used in [2].

Lemma C. The statement “g, < all ¢(M)
real roots)”’ is equivalent to the statement ‘g
(for all arbitrary vectors d of unit modulus)”.

Lemma D. The statement “gy < all c(MM3") £ g, (for two p x p real matrices
M, and M, with real roots, M, being nonsingular” is equivalent lo the statement
“gp = d'(1 x P)Ma(p x p)d(p x1) /&1 x p)Mz(p x p)A(p x 1) = g2 (for all
arbitrary nonnull vectors d)”

Lemma E. The statement “a:’ 1 x @Qz(gx 1) = h (> 0)” is equivalent to the
statement “|z’(1 x q)d(g x 1)| = V/h (for all arbitrary vectors d of unit modulus)”.

2.4. A result in set-theoretic logic. It is well known that the statement “If £, ,
then E,” is equivalent to the statement “E, is a necessary condition for E,”
which again is equivalent to thestatement “E; C E,”. All thesestatementsimply
that “P(E,) < P(E,)”, which is a necessary (though not a sufficient) condition
for the other statements. This will be used in the derivation of the confidence
bounds.

3. Confidence bounds on ¢(Z)’s and ¢(Z:23")’s.
3.1. Bounds on ¢(Z)’s. Starting from (2.1.5) and noting that

(for a p x p real matric M with

=0
SdAxpMpxpdpxl) = g

(8.1.1) | ¢(Dy//sT' ST Dy /6) = ¢(STDyel”) = ¢(SZ7),
we have, with a confidence coefficient 1 — «, the equivalent confidence bounds
(3.1.2) (1/1)61a(p, n) < all ¢(S=7") £ (1/n)b24(p, 1),

nbra(p,n) = allcZS™) = nbza(p, n).
From (2.3.6) we observe that this implies
“(3.1.3) 072D, 7)Coex(S) = all ¢(Z) Z nbza(p, n)cmin(S),
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which is thus a set of simultaneous confidence bounds with a confidence coeffi-
cient = 1 — a. We note that, by using Lemma C, we can replace “all ¢(2)”
occurring in the middle of (3.1.3) by “a’Za (for all arbitrary vectors a of unit

modulus).”
From Lemma B we also observe that (3.1.2) implies
(3.1.4) [n812(p, n)]* tr:(S) = try(Z) = [nbza(p, n)]° tre(S),

fort = 1,2, ---, p, which is thus also another set of simultaneous confidence
bounds with a confidence coefficient = 1 — «. Using (2.3.1), tr,(S) and tr,(Z)
are easily calculated in terms of 4,’s and 6/'s.

3.2. Bounds on ¢(2:23")’s. Starting from (2.1.6) we have, with a confidence
coefficient 1 — a, the confidence bounds

(3.2.1) (n1/12)07a(p, n1 , me) = all ¢(Se(u’) ™ D/aw’ ST uD/5u™)
2 (11/m)0za(p, m, ma).
Using (2.3.2) and (2.3.6) we have
(82.2)  Cmax[S2(1) ™ D/ot’ ST 1D+ /51 omax(S7Y)
2 all ¢[(u') "' Dy/au’ST'Dy/er "] = all ¢(S7'A)
2 Cmin[S2(w) "' Dy/ou’ STD /61 Cmin(S7Y),
where :
(3.2.3) A = Dyer )N (W) "' Dyaw') = (Dyau™)(uDyeu")'.
In the same way we have
(324) Cmax(ST'A) Cmax(81) Z all ¢(A) Z Cmin(ST'A) Canin(S1)-
Furthermore, noting that
3.2.5) cwDver™) = ¢(Dyvs) = V6 = c(u'™ Dyai'),
and using (2.3.5), we have
(3.2.6) Cmax(A) 2 all *(uDyeu™) = all (D) = all ©; = Cuin(A).
Combining (3.2.2), (3.2.4) and (3.2.6), we have
(3.2.7) cmax<S2(ﬂl)—lD\/§ﬂ’ST "wD/ok™) Cuax(S7") Cmax(1S1)
Z all 6i = Cuin(S2(w) " Dy/en' St D/l ™) Cmin(ST") Camin(S1)-
From this it is easy to check that (3.2.1) implies
B.2.8)  (M/m2)0Ta(p, M1, M2) Craax(S2") Cmax(iS1) Z all ¢(2:277)
i 2 (/)22 (D, M, M) Cmin(S7") Canin (S1),
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which is thus a set of simultaneous confidence bounds with a confidence coeffi-
cient =2 1 — a. We observe that, by using Lemma D we can replace “all
¢(2:27")” occurring in the middle of (3.2.8) by “a’Z:a/a’Z:a (for all arbitrary
nonnull vectors a(p x 1)).” We notice that

cmax(S;I) = I/Cmin(Sz), Cmin(Sgl) = 1/Cmax(8S2).

Confidence bounds in terms of tr; could also be given as in (3.1.4), but in this
case the bounds would be more complicated and would appear to be less worth-
while than in the previous case.

3.3. Determination of the constants (61.(p, n), O(p, n)) and (8(p, 11, na),
024(p, 11, M2)) occurring in the confidence bounds. It has been stated in Section 2
that the pair 81.(p, n), 624(p, n) for the first problem and the pair 6:.(p, n1 , n2),
022(p, 11, m2) for the second problem satisfy respectively the conditions (2.1.3)
and (2.1.4), but are otherwise free. It is well known how the shortness (in the
sense of probability) of a confidence interval (or intervals) ties in with the power
of the associated test. Let us consider the associated tests, or rather, the ac-
ceptance regions of the respective hypotheses (i) H(Z = Z,) and (ii)) H(Z;, =
Zs). They are, respectively,

(33.1)  H(Z = 2y): 61a(p, n) < 61 £ 0, < 624(p, n),
(332) H(El = 22)3 Ola(p, n, n2) =6L=6, s 02a(p, m, n2)'

lIA
lIA

In the first case it is possible to choose 61, and 6. (and this choice will be
unique) so as to let the second kind of error (which, aside from p, n and «, de-
pends only on the characteristic roots of Z=5) have a (local) minimum, that
is to let the power have a local maximum at £ = Z,, when 2 7 Z,is supposed
to be the alternative. In this case it so happens that the resulting power function
then monotonically increases as each ¢,(Z2Z7") tends away from unity, provided
that all are = 1 or < 1, to begin with.

In the second case, we have an exactly similar situation, H(Z = Z) being
replaced by H(Z, = Z,) and 225" being replaced by Z:23". The effect of this on
the shortness, in the probability sense, of the resulting confidence bounds is
obvious and need not be discussed in detail.

The results just stated are proved in another paper to be published shortly.
It may be noticed, however, that for any pair (6. , e2.) subject only to (2.1.3) or
(2.1.4), we are going to get anyway the confidence bounds of Sections 3.1 and
3.2, with confidence coefficients = 1 — a, the only difference being that they
will not have the property of “shortness” possessed by those that are based on
(61 , 022) determined in the above way.

4. Confidence bounds on the regression matrix 1225 or 8. It is well known
[1] that the statement (2.2.13), for all arbitrary nonnull b; and b, is exactly
equivalent to

“(4.1) allg; <8 or 6, < 6,
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where the 0’s,fori =1, pand0 < 6, < -+ = 6, = 1, are the roots of
the determinantal equation in 6

(4.2) |6(Su — Suf’ — BS1z + BSxB") — (Siz — BSu) Sz (S1z — S:B)| =0

Now put A = 6/(1 — 6), so that we have, from (4.2), the determinantal equa-
tion in A

(43)  M(Su — SuSm81u) — (SuSwm — B)Sn(S7mSn — )| = 0.

Statement (4.1) can now be replaced by the statement that the largest root of
(4.3) is not greater than A = 6,/(1 — 6,), that is,

(44) all ([(Su — SuSz'Sw) (B — AS=(B — )] = 6/(1 — 6),

where B(p x q) = 81287 . This B may be called approprlately the matrix of
sample regression of the p-set on the g-set.

We note that (4.4) is equivalent to (4.1) which again is equivalent to (2.2.9),
so that 6, is the largest characteristic root of the matrix (Z:21)"(Z12:)(Z:22)~"
X (Z.Z1), where (Z, , Z5) have the p.d.f. given by (2.2.8). The joint distribution
of these central 8,’s, and also of the largest root 6, are known; thus all that we
have to do to make (4.4), that is (4.1), that is, (2.2.9), a simultaneous confidence
statement with a joint confidence coefficient 1 — «isto choosefy = 6.(p,¢,n — 1)
= 0, (say), where 6, or 8, is defined by P(central 6, = 6) = a.

Now, as in Sections 3.1 and 3.2, using (2.3.5) and the result in Section 2.4, we
have from (4.4), with a joint confidence coefficient = 1 — «, the simultaneous
confidence statement that

@45) all (B — B)(B' — )] < [8a/(1 — 0a)lemax(S11 — S1285 Sie)Camax(S22).

We now note that
cmnx(S—Zl) = 1/ cmin(Sﬁﬁ) 5
cmax(Sll - SBS_21812) = cmax(Sll)cmax(I — St 18128—2 Su),
Cmax(I — ST081287812) = 1 — Cmin(STH ' S128% S12).
Using these, we check that (4.5) can be replaced (with a confidence coefficient =
1 — a) by
(4.6) all [(B—B)(B' — 8] = __0,, [1 — Camin(S11 81287 2812)] cm”(su)
' ]. - 0 mm(S22)

a

Letting & denote the right side of (4.6), and applying the Lemmas C and E to
(4.6) we have, with a joint confidence coefficient = 1 — e, the following equiv-
alent simultaneous confidence statements for all arbitrary unit modulus vectors

di(p x 1) and do(g x 1),
@7 |dB - Bl = Vh  diBdk — Vh = difd = diBdy + Vh.
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A set of simultaneous confidence bounds on just the elements 3;; of the g-
matrix would be a subset of the bounds on the total set di8d . It is worthwhile
to check that, if p = ¢ = 1, (4.7) reduces, as it should, to (2.2.1). Also, if p = 1,
we should have another special case of (4.7) giving a set of simultaneous con-
fidence bounds on all linear functions of the partial regressions of one variate on
several others. Thus, in several ways, (4.7) seems to be an appropriate generali-
zation of (2.2.1).
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