ASYMPTOTIC BEHAVIOR OF SOME RANK TESTS FOR ANALYSIS
OF VARIANCE!

By Frep C. ANDREWS®
Stanford University

1. Summary. The H test and the median test have been proposed for testing
the hypothesis of the equality of ¢ probability distributions. Assuming transla-
tion-type alternatives, we find the limiting distributions of the H and median
test statistics. These results are used to derive general formulas for the asymptotic
relative efficiencies of these tests with respect to one another and to the classical
F test. A short discussion of the computation of approx1mate power functions
of these tests is also included.

2. Introduction. A few tests of a non-parametric nature have been proposed
for the problem of testing the equality of ¢ probability distributions, the so
called c-sample problem. Tests for the two-sample problem have been proposed
by Wilcoxon [22], Mann and Whitney [11], J. Westenberg, [21], and Mood and
Brown [12], among others. Consistency and power properties of some of these
tests have been discussed by van Dantzig [3], Lehmann [8], [9], and Mood [13],
among others.

The H test proposed by Wallis and Kruskal [20] is a direct generalization of
the two-sided Wilcoxon test discussed in detail by Mann and Whitney [11].
The H test is similar to a classical F test, with ranks replacing the original
observations. The Mood-Brown median test [12] makes use of the construction
of a 2-by-c table and the resulting large sample theory thereof. Pitman [16]
derives the general formula for the asymptotic relative efficiency of the Wil-
coxon test with respect to the ordinary ¢ test, when quite general translation-
type alternative hypotheses are assumed. Mood [13] assumes only normal alterna-
tive hypotheses and computes the asymptotic relative efficiencies, with respect
to the ¢ test, to be 3/7 for the Wilcoxon test and 2/x for the median test;
the former is a special case of the Pitnam result.

After setting up suitable alternative hypotheses and finding the limiting
distributions of the relevant statistics, we find general formulas for the asymp-
totic relative efficiencies in the c-sample case for translation alternatives but
almost arbitrary distributions. These formulas do not in general depend on c.

Mood [12] and Kruskal [7] derive the limiting distributions of their respective
statistics in the case of the hypothesis of equal distributions. The methods used
here to derive the distributions under the alternative hypothesis duplicate their
results.
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A rather complete bibliography on nonparametric c-sample tests and a discus-
sion of the rationale for applying them is given by Wallis and Kruskal [20].

The c-sample problem may be expressed formally as follows. Let {X;} for
1=12---,¢candj=1,2 -+, n be a set of independent random variables.
The probability distribution function of X;; is denoted by F., so that Fi(x) is
the probability of the event [X;; < z]. The set of admissible hypotheses desig-
nates that each F; belongs to some class of distribution functions Q. The hypothe-
sis to be tested, say Ko, specifies that F; is an element of © for each 7 and that
furthermore Fy(x) = Fy(x) = - - = F,(x) for all real . Alternative to K is the
hypothesis that each F; belongs to @ but that K, does not hold. To avoid the
problem of ties, it is assumed throughout that the class © is the class of continuous
distribution functions.

So as to pay particular attention to translation-type alternatives, the class of
admissible hypotheses will be limited to include only those hypotheses which
state that Fi(x) = F(x + ¢) forallz = 1, 2, - -+, ¢, for some arbitrary choice
of F in the class @ and real numbers €, -+, e . It is seen immediately that
specifying all ¢ = 0 yields hypothesis Ky, while if ¢; # ¢; for some pair (, 5)
then an alternative to Kj is given.

The H test is based on the statistic

12 : = N+ 1Y
® # =y (R -5,
when E; is the average rank of the members of the sth sample obtained after
ranking all of the N = D n; observations. The test consists in rejecting K,
at a significance level « if H exceeds some predetermined number 4, . Kruskal
[7] proves that if Ko is true, the statistic H has a limiting chi square distribution
with, ¢ — 1 degrees of freedom as all n; — o simultaneously. This provides the
user of this H test with a large sample approximation of the value of A, for any

0<a<l
The Mood-Brown median test is based on the statistic
NN —-1) ( bm,)2
@ M=35—% z_;'n N

where N = D_n;,and b = 3(N — 1) when N is odd, and b = 1N when N is
even, while m; denotes the number of observations in the sth sample which are
less than the median of all of the observations. Mood proves that whenever K, is
true, the statistic M has a limiting chi square distribution with ¢ — 1 degrees
of freedom as all n; — o simultaneously. The median test is then to reject K,
at the level of significance « whenever M exceeds a number m, . Use of the limit-
ing distribution allows one to determine an approximate value for m, for large
samples.

Because both the H test and the median test are consistent against translation
alternatives, the distributions of H and M will be studied, in following sections,
assuming a sequence of admissible alternative hypotheses K, forn = 1,2, ---
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The hypothesis K, specifies, foreachi = 1,2, - - - , ¢, that Fi(z) = F(z + 0,/\/n),
with F £ Q@ but not specified further, and for some pair (¢, 7) that 6; > 6;. The
letter n will be used to index a sequence of situations in which K, is the true
hypothesis. Limiting probability distributions will then be found as n — .
The problem will be so formulated that N will be proportional to n. For large n
the hypothesis K, is ‘“near” Ko, so that this type of limit process provides a
way of studying the effect of small translations on these tests.

The notation x-(\) will denote the possibly noncentral chi square distribution
with degrees of freedom r and noncentral parameter A. Thus x2(\) is the proba-
bility distribution of the sum of r squares of independent normal random vari-
ables whose variances are all unity and whose sum of squared expectations is
denoted by A. For A = 0 we see that x(0) is the ordinary chi square distribution.
The x2(\) distribution has been studied and used by Fisher [4], Tang [19], and
Patnaik [15], among others. A partial tabulation of some percentage points of
x2(\) is given by Fix [5].

3. The limiting distribution of H under hypothesis K, . The purpose of this
section is to prove

TueoreM 3.1. For each index n assume that n, = sun, with s, a positive integer,
and the truth of hypothesis K, . If for any real number {,

im [ Vi (P 4 /) — F@) ar@

exists finite, then, for n — o, the limiting distribution of the statistic H s xe1(\F),
where

B) N\ = [12 (Z s,->_2] Z 8«

j=1 a=1

' {Z.; sitim [ [F (x +E F(x)] dF () f,

From (1) and definitions (5), (6), and (9) below one can write

@ n=[o/(Ea)(E i) Eelva (-1 Z2)]

The proof of Theorem 3.1 then quite naturally depends upon showing that
the random variables

Dol

S5
.~>’ a=1,2,---,c,

i=lxa Sq

Vn (U"" -

have a certain joint limiting normal distribution as n — c. The methods used
irn the proof are mainly adaptations of results of Hoeffding.[6] and Lehmann
8].
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We begin the proof by defining the functions h* by

(5) Ry o s Yas o > Yo = 22 5(ys, Ya),

=1 Sq

with the convention that §(ys, ¥.) = 1 whenever y3 < y. and is otherwise
zero. Throughout this discussion « will range over the integers 1, 2, ---, c.
Recalling that n; = sm;, we construct for £ = 1, 2, - -+, n the random vectors

©) Xi = (X1 gvpors1, X1 te—ior2zs *** 5 X1 oy 5
Xy ogtly ** y X2 keg; 0 3 Xe Dagtls * " 5 Xo ke,)
and the random variables ¢, U?, and U’*, defined by

@ 3 1 @ . . o o .
(7) (4 (Xl ) ) Xc) = (8182 A «S‘c)(C!) Z: h (Xln ’ 1X¢‘Jc)7

with the summation extending over all indices (41, -, j.) in such a manner
the arguments of a single A” are components of distinct vectors;

® Ut = o, Xy, %00 /(1)

where the summation extends over all indices 1 £ 81 < B2 < -++ < B < n;and

a 1 o - a
©) U = e 2 2 Wy, Xy, oo, X)),
Then U’® is recognized as the average of all kinds of A* terms while U” is an
average of only those h® terms in which the arguments of a given A* are each
elements of a different vector. Setting j* equal to the sum of all 4* terms appearing
in U’® but not in U?, we have

e =L {(") U+ J"'} )
NiNg **°* Ne C

D* = Ula— Ua =——1—~{[<n>61 —nlng---nc] Ua+Ja}.
N1Ng **° Ne¢ C

Adopting a method of proof given by Lehmann ([8], p. 168), we use the in-
equality (2_%a,)* = kD1 a for real numbers a;, and the fact that

Let

c 2
E(h*(Xyjy y Xaigs ++0 s Xei)}? S <E i9) .

5=1 S

Thus we establish that

EVm DY < 4 <,,§=3 oY [\/ﬁ (1 e (Z‘))] 0 asm-

o
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With the notation W* = v/n (U'* — EU’®) and Z* = v/n (U* — EU®),
EW®* — Z°? = E(\V2 D% -0 asn — o,

Applying Lemma, 7.1 of Hoeffding ([6], p. 305), we have

LemMa 3.1. If either of the random vectors W = (W', W% --- ,W°) or
Z = (Z" 7", -+, Z° has a limiting probability distribution as n — oo, then the
other random vector has this same limiting distribution as n — .

The next step in the proof is to compare the random vector Z with the
random vector Y = (Y, Y? ..., Y°), whose components are defined by
Y = (¢/v/n) X1 ¢i(X.), with
\b?(xlyx?’ e ,.’Ej) = E¢a(x17x2: e :xj,XJ'+17XJ'+2, e :Xc)

- E¢a(X1, Xz, ooy Xo).

The functions ¢;(x;, %z, -+ , x;) are the same as those defined by Hoeffding
[6] except that they are applied to this special problem. Now Hoeffding ([6],
p. 299, (5.13)) has shown that
-1
Bz = nd(U) = on (”) (f : f) af + RS,

c
-1 ¢
a n [ n—=«c¢ a a a
RM:n(") .1=Z2(J><C—j>a“ aj =E{'l/i(X1,X2:"'°7Xi)}2'
By expanding binomial coefficients we calculate
2 ¢c—7

r=3 G () O[1- 23| B e +i- e

k=1

however, a < 4(D_ 41 ss/3a)" for all @, j so that R%; — 0 as n — . Referring
to Hoeffding ([6], p. 308, (7.10) and (7.12)), we find that
E(Y*)? = E(Y°Z*) = caf .
Substitution yields
B(Y* — Z% = E(Y*) + E(Z%) — 2E(Z°Y") = R%,

-1
+|:cn(::) (Z:lc)—c2:|af‘—>0 asn — o,

Another application of Lemma 7.1 of Hoeffding ([6], p. 305), produces
Lemma 3.2. If either of the random vectors Z or Y has a limiting probability
distribution as n — o, then the other random vector has this same limiting dis-

tribution as n — .
It now remains to find the limiting distribution of Y. Each Y is a sum of

independent and identically distributed random variables,

’ “__c- - -3 3. @y
Yt = =3 i) B =o.
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Also, ¥1(X;) < 2(D_p-15s/5.) with probability one. Adopting the notation
for the column vectors s = (s, ---, s)’ a vector of real numbers, and
Y= (w} Vi y :pf)', the characteristic function of Y is expressed as

fa(s) = E(e*'") = E(exp {ics'¥s//n})",

because of independence. Taking logarithms, expanding the real and imaginary
parts of the exponential in finite Taylor series, using the almost sure bounded-
ness of ¥1(X;), noting that Ei:(X;)] = 0, and finally expanding the logarithm
in a finite Taylor series, produces the usual type of result that

log fu(s) = —3s'[E@w1)ls + O™ asn —

for any fixed real vector s. From the contmulty theorem for characteristic func-

tions ([2], p. 96), we conclude
Lemma 3.3. The random vector Y has a limiting normal distribution with E(Y)

the zero vector and variance-covariance matriz = = lim, o CEW1).
Adopting the notation

= 15 Ptk = [ Fate) arate) | - L35 [ R - [ Pute) asta) ],

Sa j=1 Sg j=1

we can recognize Y1 (X1) = (1/¢) D1 (58/84)Asa - A lengthy computation and
an application of the Lebesgue bounded convergence theorem, in view of the
boundedness of each F; and lim,_., F;(z) = F(x), yields the result that

T = hlg CEWyr) = AZI: <§ s,g) (6“” g _:—; - 1)]

Combining the previous three lemmas produces

Lemma 3.4. If for each index n the hypothesis K, 1s valid and W* denotes the
random variable /n (U'* — EU’®), then the random vector W = (W', W*, ..., W°)
has a limiting normal distribution with zero mean vector and variance-covar-

iance matrix 2.
Recalling W* = v/n (U'* — E(U’*)) and (4), and letting

m* = \/n [E(U’“) D 5—]

1=1 Sq

= [m/(é s><§: s + ):l Z sa(W* + m*)™.

Now H will have the same limiting distribution as

H* = [12‘ / <§ si>2] E sa(W* + m")?,

we write H as
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but because Y. nala = (X 12)(Xna + 1), we have 3. s2W= = O(n™"?) as
n — . So, except for terms of higher order,

c c c—1
H* = [12/(2} s)] 2; ; s <saaaﬁ + ) (W® + m*)(W® 4+ ).
We recognize the matrix of the quadratic form H * as the inverse of the limiting
variance-covariance matrix of the random variables W', W*, --. W™

LemMA 3.5. If the vector x has a mormal distribution, with mean vector u and
non-singular variance-covariance matrix A, then the quadratic form 'Az has a
x2(\) distribution, with A = p'A”'u and r the rank of A.

A proof of this lemma is given by Rao ([17], p. 57). We now calculate

lim m® = > % lim va | [F <x +% - f’“) - F(x)] dF(z),
n—ro0 B=1 Sq n—cwo '\/;@
and combine Lemmas 3.4 and 3.5 with a theorem of Mann and Wald ([10],
p. 223) to complete the proof of Theorem 3.1.
In many instances \” can easily be computed with the aid of
Lemma 3.6. If the distribution function F possesses a continuous derivative

F' except at most on a set S where f dF(z) = 0, and if there exists a function g
8
which bounds the difference quotient |[F(x + 0) — F(2)]/8] £ g(x) for which
+o0
f g(x) dF(x) < o, then

lim /7 [ [Fz + 0/v/m) — F()] dF(z) = 6 [ F'(z) dF(2).

n—oo

This lemma is proved by a direct application of the Lebesgue bounded con-
vergence theorem and the definition of the derivative. In the event that the
conditions of Lemma 3.6 are satisfied, then

12{ f F(z) dF(x)}Z 3 50, — B,
é = ;Saoa Zl Sa o

4. The limiting distribution of M under hypothesis K, . The purpose of this
section is to derive the limiting distribution of the statistic M as n — . The
result is stated in

THEOREM 4.1. Assume for each indexn = 1,2, - - - the validity of hypothesis K., ,
that F has a continuous derivative F' at its median a, and that n; = sm, for each

= 1,2, -+, ¢, with s; a positive integer. With these assumptions the limiting
distribution of M is xt_s(\™) with

(10) Yo PP S -0, 0=/ S

1=1 i=1

)\H

Il

#
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The proof of the theorem is a generalization of a type of proof sketched by
Mood [13] in his discussion of the two-sample problems. Because the two cases
N odd and N even require slight differences in exposition, only the proof for N
odd will be given here. A similar proof for N even could readily be constructed.
In this case N odd,

4 c 2
v e (it ay).

Defining the random variables v; = \/n; [(m;/n;) — 1], permits M to be written

1+1/NE{ + ”’,+ }

Provided that we can demonstrate that »; has a limiting distribution, since
v/n;/N, n;j/N? and 1/N all converge to zero as n — o, M will have the same
limiting distribution as the statistic 4 v7. The first part of proof consists in
proving

Lemwma 4.1. Assuming the hypothesis of Theorem 4.1, the limiting distribution of
the vector (v1, - , vo_1) is normal with E(v;) = F'(a)\/s; (0; — 6) and covari-
ance matrixz A, given by

) M =

A:1=<$ (8681'.1'+ VSiSj)), i;j=1,27”"6_1:

where 8;; 18 the usual Kronecker delta.
Let ry, -+, 7. be a set of independent random variables each with a uniform
probability distribution on the unit interval and let

mi + 7r; 7; .

v;=\/h—;[T11_%]=%+\/EJ7 J=1)27"'7C-
The difference v; — v; tends to zero in probability and so, by a well known theorem
(12], p. 299) the vectors (v1, - -+, v.) and (o1, -« -, v,) possess the same limiting
distribution if they have one at all. Because the v; are discrete while the v} are
continuous random variables, it is easier to examine the limiting distribution of

@1, Vo).

Denoting by Z the median of all the samples combined, the probability of
the joint event m; = a; and my; = azand --- and m.; = a,1and 21 £ Z = 2 1s
Plmi=a1, v vy Mea =G, 21 S 7 = 29

(nl - al ( ) aj; nj—a;
F Fi(2)}"{1 — F2)}""™ dz
> [ e T () @) - Fi)
for D a; = 2N — 1) with a; a nonnegative integer, and is zero otherwise.
Writing m; = m; + r; and square brackets to indicate the “largest integer
eontained in,” we see that the joint probability density function of the random



732 FRED C. ANDREWS

. ’ ’ .
variables my, «++ , Mo, Z i

olmi, -+ mica, ) = S R 32 () (R — R

for 3 [mi = 4(N — 1), and otherwise zero. With the transformation
= '\/;L.(Z - a); 1);' = \/ﬁ;{(m;/n.v) - %}; .7= 1:2: 6
the probability density of (v1, - - , ve1 , w) becomes

ey - 3 [d](nin,) ™" ’ W
M ) = e at wv (o+ \/ﬁ>

X g v <[ d,]) {F,- (a + %)}W {1 —F; <a + %)}"““"’

where d; = in; + v;4/n; and square brackets indicate the “largest integer
contained in.”

Noting that ».{ v/sp; = o(1) as n — «, employing Stirling’s formula for
log n!, and using series expansions and the continuity of F’ at x = a, we compute

c—1 gc—1
tim B, -y e w) = <\/§_> 2\/}/g
n—o0 Uy ¢

X exp { 4 3 dhy ~ P @50, - 6)12}

2F\(;Z— Vs exp {—2(F'(a))’s(6 — w)*},

where s = s + s + --- + s.. Letting A, denote the variance-covariance
. !’ !’
matrix of (v1, « -+, vea), we find

A:1= {(4/30)(8061'1"]'\/'?3]')}’ L,j=12 --,c— 1
Applying a theorem of Scheffé [18] yields the result that the limiting dis-

tribution of (v1, - -+ , ve_y, w) is the foregoing normal distribution. Integrating
out the variable w, we obtain the desired limiting probability distribution of
(vy, - pc_l) and hence of (v, -, 1), which proves Lemma 4.1.

Earlier in this section it was remarked that if (v, -+, v.1) has a limiting
distribution, then H has the same limiting distribution as

c c—1 c=1 c¢—1
4_2105 = {Z (sc + 805 + ;LZ V's;s kv;vk} + 7.
ji= P o
However, 4 tends to zero in probability, since Y v/sw; = o(1) is satisfied with
probability one. We recognize then that, except for the term 5, 43 v% is equal
to the quadratic form in the limiting distribution of (v;, -+, v._1), provided
that the means are shifted to zero. As in Section 3, we employ Lemma 3.5 to
8btain the main Theorem 4.1 of this section.
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6. Asymptotic relative efficiency. The concept of asymptotic relative efficiency
of one consistent test with respect to another is due to Pitman [16]. An appli-
cation and account of this method of comparing consistent tests is presented
by Noether ([14], p. 241). Briefly, the idea of asymptotic relative efficiency is
to choose a sequence of alternative hypotheses which vary with the sample
sizes in such a manner that the powers of the two tests for this sequence of
alternatives have a common limit less than one. The comparison of the two
tests is then made on a sample size basis.

To be more definite, suppose that two consistent tests 7' and 7" require N
and N’ observations, respectively, to attain the power 8 at level of significance
a for testing the hypothesis K, against hypothesis K, . The difference in the
sample sizes N and N’ results from the fact that we demand that the tests
yield a common power for a given alternative K,.. The asymptotic relative
efficiency of 7" with respect to T is defined to be

gm N/N' = 'll]jn n/n’ = er,2(a, B, Ko, {Ka}).

The asymptotic relative efficiency of the median test with respect to the H
test is stated in

TaEOREM 5.1. If n; = sm and if the distribution function F has the two proper-
ties,

(1) F is continuous at its median, and

+o0
(i) lima.o V7 [ [F(z + 6//n) — F(z)] dF (x) exists,
then the asymptotz'c' relative efficiency of the median test with respect to the H test
for testing the hypothesis Ko against K, 18
c 2 c
(Za) - @ % a0~ o7

j= 5

=1

33 s {; s tim [ /7 [F (x +0‘\;ﬁo") - F(x)] dF(x)}z.

a=1 n—ow ©

€M, g =

To prove Theorem 5.1, let n’ and n index the sample sizes for the H test and
the median test, respectively. The alternative hypothesis K, states that
Fiz) = F(z + 6:/+/n) and so is characterized by the numbers 6;/+/n. If the
level of significance is fixed at « and the limiting power fixed at 8, then, since
from Theorems 3.1 and 4.1 H has a limiting xo_1(\7) distribution and M has a
limiting x2_3(A\ ™) distribution under K, , we must have \” = A™ to achieve the
same limiting power for the two tests. To have the same alternatives for each
test we must have 8;/4/n = 67/+/n’. The substitution 0; = 6; /n’/n in (10)
along with the requirement \¥ = A* (to guarantee equal power) yields formula
(11), which proves Theorem 5.1.

CoRrOLLARY 5.1. If in addition to the hypothesis of Theorem 6.1, the hypothesis
of Lemma 3.6 vs assumed, then

o = %[F’(a) / [ ra dF(x):Iz.
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Here ey, x does not depend upon o, 8, (61, -- -, 6.), or ¢, but is a function of F
only.

The comparison of the H test with respect to the ordinary analysis of vari-
ance § test is contained in

TrEOREM 5.2. If the distribution function F satisfies the conditions of Lemma

+e0 [+ 2
3.6 and if [ «* dF (x) — I_ [ xdF(x):l = o' exists, then
0 2
€, r = 120’%? [[ F'(x) dF(x)] .
The classical F statistic in this instance is defined by
1 .
Z ni(@s. — %)
c— 1%

[1 > (s~ 1)] > 3% (ws — wn)*

=1 =1

g:

Now Fisher [4] and Tang [19] have shown that if F(z) is the normal distribu-
tion function, then under hypothesis K, the statistic & has a limiting x2_.(x%)
distribution with \¥ = > 5 s0(8; — 8)/osl’. However, it is a well known result
of the weak Law of Large Numbers that [1/(n — 1)] D7 (@ — 21.)" — o¥ in
probability as n — . Also the Lindeberg-Levy central limit theorem shows
that \/nz; . — E(z;.)]/or has a limiting N (0, 1) distribution. Application of the
Mann-Wald theorem used previously gives the result that under hypothesis
K, the statistic § has a limiting x2_1(\”) distribution whenever F satisfies the
hypothesis of Theorem 5.2. A calculation similar to that for the proof of Theorem
5.1 completes the proof of Theorem 5.2.

Theorems 5.1 and 5.2 show that, depending upon F, e, x can be % 1, similarly
for en,5 and ex,5 = eu,menF . In the event that F is some normal distribution
function, then ex,x = 2/3, ex.g = 3/m and ey, = 2/7. When F is the uniform
distribution function on the unit interval, F(z) = if0 < x < 1, then ex,» = 1/3,
en, 5 = 1,and ex,g = 1/8.

6. Power functions. The power of a test for a given simple alternative hypothe-
sis is the probability that the test will reject the hypothesis tested when the
given alternative is true. In terms of this power definition, the power function is
defined on the class of alternative hypotheses.

As we have seen in Sections 3 and 4, both the H and M statistics have limiting
noncentral chi square distributions when the alternatives K, are true for each n.
In the event that Lemma 3.6 is satisfied, the noncentral parameter in each of
these limiting distributions is a function of 6, , - - - , 6. only through the variable
> 5:(6; — 8)". In fact

+o0 2 c
=12 l;[ F'(z) dF(x)] 250 — 0, N = 4[F'(@) ;1 8:(6: — 8)".

i=1
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For particular choices of F the power function of each of these tests could be
considered as a function of Y s:(6; — 8)*. This type of power function approxi-
mation is discussed in Cochran’s paper on the chi square test for goodness of
fit [1]. :

The tables of Fix {5] may be employed to find approximate values for these
power functions. The procedure would be as follows. Suppose that F is the
uniform distribution function on the unit interval, then A* = 123 s,(6; — 8)’
and \¥ = 4 s;(6; — 8)”. If the approximate power is desired for the test us-
ing n? = sm® observations in the sth sample, when alternative Fi(z) = F(z + ¢)
fori =1,2, ---,c,is true, set &; = 0;/4/nd and compute

2\ =12 Zl nMe — %, A =4 0% — )%
1= =1

For the given level of significance and ¢ — 1 degrees of freedom, enter the Fix
tables and find the approximate powers for these two tests at the given alterna-
tive. Because of the limited extent of the Fix tables, the power can be found only
to the first decimal place without some sort of interpolation. In most instances,
however, this accuracy should be sufficient, as it is not known how close these
approximations are to the true power.
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