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A SIMPLE SEQUENTIAL PROCEDURE FOR TESTING
STATISTICAL HYPOTHESES!

By Cuia Kurr Tsao

Wayne University

Summary. In this paper a simple sequential test is suggested. Distribution of
the sample size, its moment generating function, the power function of the test,
and the ASN (average sample number) function are obtained. The determination
of the set of relative optimum zones for making decisoins is shown to be unique.
The existence of a class of sets of absolute optimum zones is proved. The sug-
gested test is shown to be consistent. Some possible applications are discussed
and a few numerical efficiencies are calculated.

1. Introduction. Let {f(z)} be the class of all continuous pdf’s (probability
distribution functions) defined over a space S. Let random observations be
drawn successively from a population having an unknown continuous pdf f(x).
Let the simple hypothesis Hy:f(z) = fo(z) be tested against a certain alternative
or a certain class of alternatives. We shall propose a simple sequentual test
procedure and be concerned with the investigation of the properties of the test.

To test the null hypothesis Ho:f(z) = fo(x), we divide S into three mutually
exclusive sets (zones):

S1 is the zone of preference for acceptance;

S. is the zone of indifference;

S; is the zone of preference for rejection. _

Random observations are drawn successively. At each stage, the number of
observations falling in each of the three zones will be counted. Let m; be the
number of observations falling in the zone S; for 7 = 1, 2, 3 at the mth stage
(i.e., after the mth observation has been drawn). Let a and r be two predeter-
mined positive integers. Continue to draw observations as long as m; < a and
ms < r. The experiment is discontinued as soon as either m; = a or m3 = r. The
null hypothesis is accepted if m; = a, and rejected if m; = r.

For simplicity, we shall restrict S to be n-dimensional Euclidean space (or
a subspace of it) and assume, of course, that the pdf f(z) is continuous in S.
However, most of the theorems given in this paper can be extended to more
general cases with slight modifications.

2. Fundamental lemma. The principal aim of this section is to prove a lemma
which was used for obtaining the moment generating function of the sample size
and the power function of the test.

Suppose m, p, and ¢ are positive integers and B, C, and D are positive real

Received: 4/27/53, revised 3/22/54.
1 This work was supported in part by the Office of Naval Research.

687

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [&

The Annals of Mathematical Statistics. MIKOIRS ®

WWWw.jstor.org



688 CHIA KUEI TSAO
numbers. Let
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Thus, Lemma 1 is proved.

3. Distribution of the sample size and its moment generating function. The
distribution of the sample size, (a, r, S1, Sz, Ss) being chosen, depends upon the
true underlying distribution, f(x), being tested. In this section, we derive the
pdf g;(m; a, r, Si, S:) of the sample size m and its mgf (moment generating
Jfunction) M ,(t a, 7, 1, S3) under the assumption that f(z) is the true under-
lymg distribution and the set of parameters (a, r, S1, Sz, S3) is predetermined.

Throughout this paper, we shall denote by A, I, and R the following three
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quantities:
(3.1) A= fs f@) do, T = fs f@) ds, R = fs 1) da.

We shall denote these quantities by
(a) A;, I, and R;, if f(z) is replaced by fi(x) fori = 0 or 1;
(b) A’, I’ and R', if (S, Sz, Ss) is replaced by (81, Sz, S3);
(¢) A%, I, and R}, if f(x) is replaced by fi(x) for s = 0 or 1, and (S;, Sz, Ss)
by (81, S, S3).
With the definitions (8.1), it is easily seen that the pdf is given by
<« (m — 1)!

gf(m; a, T,Sl, Sa) = zgo (7. — 1)!x!(m — = x)!

r—1 .
+X m =1\ ___ gepep——.

=0 (@ — Dxllm — a — x)

RrAzIm—r—z

(32)

Therefore the mgf is given by

o a—1 _ 1
M/(t; a,r, SI)S3) = EZ (m 1)‘

mor 220 (r — Dlxllm — r — z)!

oo r—1
+ Z Z (m - 1)' AaRzIm—a—zemt.
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This can be written as

00
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e 2=0 (@ — ) lxl(m — a — z)!
= h(a,r, R/I, A/I, Ie") + h(r,a, A/I, R/I, I¢").
Thus, by Lemma 1, the mgf can be written as

¢ r
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4. The power and ASN functions. Suppose the set of parameters
(a, 7,81, S: , S3) is predetermined. Then, it is easily seen that for any alternative
f(x), the power function is given by

00
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By Lemma 1, this can be written as
¢(f; arr)Sl)S:’.) = h(a;T;R/IyA/I,I)y

et r =1 —_t
=1_fo (a?—l)i(r——l)!z (1 =2)™ da,

(4.2)

P atr—nt -
" (aa—l)c(r-—mz (1 = 2)"" de,

where 8 = B(f; 81, Ss) = 1/(1 + A/R).
By the use of the mgf (3.5), it is easily verified that the average sample number
(ASN) is given by

w(f; a8, 8) = }%[«:(f; a,r, 81, 8) — (" Te- 1) g - 6)“]

(4.3)
+4[1-ets ansis - (T e e - ).

4

This can also be shown to be

~r1—B
u(f; ayr, S, 8) = - [1 - / Mz"_l(l -2 dz]
R Jo

(4.4) (: ; i—)!r;'
a r a). r— a
+;4|:1— ) =D 1)!a!z 1 -2 dz:l.

5. Optimum zones S;, S:, Ss. In testing the null hypothesis f,(z) against an
alternative hypothesis f;(x), all the four quantities

‘P(fo y 47, S ) S3), ﬂa(fl 5 4T, Sly ‘S3):
/“'(fo a7, S17 S3)a ”'(fl y @, 7, Sl ) S3)

are functions of the four parameters a, r, Sy, and S;. Accordingly, there may
be many ways of defining the optimum zones. However, in choosing a definition,
we should take into consideration the following three problems: (a) the definition
itself should be reasonable from the point of view of the statistician; (b) it must
be realizable, that is, the optimum zones must exist; and (c¢) it can be put in a
form suitable for applications.

Furthermore, if the pair of positive integers (a, r) is preassigned, a set of opti-
mum zones should be such that it is optimum (in some sense) among all possible
sets (S1, Sz, S3). If the pair (a, r) is to be determined by the experimenter, then
a set should be so chosen that it has certain optimum properties in the whole
parameter space {(a,r, S1, Sz, Ss)}, that is, it is optimum for all possible choices
of pairs (a, r) and all possible choices of sets (Si, S:, S;). In the following, we
give two definitions, one for a fixed pair (a, r) and the other for the general case.
However, the determination of the optimum zones for the general case is so

#difficult that we shall just prove their existence.
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For any given set (e, ¢, a, r), where 0 < a < ¢ < 1, we shall denote by Q,,,.4.-
the class of all possible sets of the three zones (S;, S», S;) which satisfy the
following two conditions:

(5°1) ‘P(fo y a, 7, S ) S3) = a, ‘P(fl y O, T, N ) S3) = .

Here, we have assumed that the class Qq,,,q,- s nonempty. A proof of the existence
of such a class under certain general conditions will be given in Section 6.

A test is said to have the sirength (a, ¢), if its power function satisfies the two
conditions (5.1). Thus, every test based on a set of Q.4 has the strength
(e, 9).

Derinrrion I. A set (Si, Sz, S3) of Qa6 is said to be relatively optimum
with respect to (a, r), if the inequalities

”'(fo; a, T, Sl) S3) é I-"(fO; a,r, Si; S;): )
ﬂ(fl y a,T7, Sl ) SS) é I-"(fl; a,r, S;. ) S;)

hold for all sets (S1, S5, S3) € Qu.p.ar . The three zones of a relative optimum
set are called relative optimum zones.

To determine the relative optimum zones, we need first to prove the following
two lemmas.

LemmMa 2. For fixed a and r, the ASN function u(f; a,r, Si, S;) decreases as
either A or R increases.

Proor. Taking the partial derivatives of the ASN function (4.4) with respect
to A and R, we obtain

(5.2)

ow _ a4 ey
63) = —ml - [ e - ya],
w _ a B tr+a)! . Y

Since (5.3) and (5.4) are always negative, Lemma 2 is proved.

LemMma 3. Suppose (a) fo(z) and fi(x) are continuous, (b) for every real number c,
the probability measure of the set {x; fi(x)/fo(x) = ¢} under either hypothests is
zero, and (c) the set (Sy, S, Ss) defined by

G5) S = {z; fi@)/fx) < k b
(5.6) S = {x; ke = i@)/fo@) S f b
6.7 Ss=f{z; ki = fi(x)/fo(x)},

where ko = ki are two constants, belongs to Qu,p,a,r +

Then, for any set (S, S5, S3) 7 Qu.p.a.r , We have
(5.8) A< Ay, Ri=Ry,, A1=4A, RiZR.

Proor. In order to prove Lemma 3, it is sufficient to prove (i) if Af,» < Ao,
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then Ry < Ry, Ay < A, and Ri £ Ry, and (ii) under the given assumptions,
the inequality Ay < Ao holds.

First, assume Aq < Ao. Since both (Si, Sz, Ss) and (81, S5, S;) are in
Qu.p.ar, then, by (4.2) and (5.1), we have

(5.9) (a) AoRo = Ay/Ry, (b) AiRy = AiR:.
By (5.92), Ao < Ao implies Ry < Ro . By (5.7), Ry < R, implies Ri < R, (using

an argument of the Neyman-Pe;rson type). Finally, by (5.9b), R: £ R, implies
A7 £ A, proving (i).
Next, assume Ag > Ao. Then, by (5.9a), there exists a positive number &

such that

(5.10) Ag = Ay + 84, Ro = Ro + 6Ry .
Therefore, by (5.5), (5.6), (5.7), we must have
(5.11) Ay > Ay 4+ 84;, Ri<Ri+ oRi,

which imply that A1/R1 > Ai/R: . Consequently, we obtain
(512) ¢(fl y @7, ‘S,l ) S;) < ¢(f1 y T, ‘Sl ’ S3)'

This contradicts the assumption that both (S:, S:, Ss) and (S1, Sz, S3) are
members of Qa,,.q,-. Hence, the inequality Ay < A, must hold, proving (ii),
which completes the proof of Lemma 3.

TuroreM 1. Under the conditions given in Lemma 3, the set of the relative opti-
mum zones (S1, Sz, Ss) with respect to (a, r) for testing the simple hypothests
fo(x) against the alternative hypothesis fi(x) with sirength (e, @) s the set determined
by (5.5), (5.6), and (5.7)

Theorem 1 follows from Lemmas 2 and 3.

From Theorem 1, it is seen that, for each (e, ¢, a, 7), the set of relative opti-
mum zones (S; , Sz, Ss), when it exists, is uniquely determined. In the following,
we shall assume that, for every (a, ¢, a, 7), the set of the relative optimum zones
exists. We shall denote by Qu,, the class of all possible sets of the three zones
such that the corresponding tests will all have strength (a, ¢) for testing fo()
against fi(x), thatis, @a.y = Ua.r Qa.p.e.- - To distinguish the sets in Q,,, from the
sets in Qg p.q,» for some fixed (a, r), we shall write (a, 7, 81, Sz, S;) as the general
set in Q... We shall also denote by Qa0 the class of all sets of the relative
optimum zones in Q.,, , that is, all sets (a, 7, S1, Sz, Ss), where, for each pair
(a, r), the set (S1, Sz, Ss) is the set of relative optimum zones with respect to
(a, ).

A set (a, r, S1, Sz, Ss) of Qa, is said to be comparable with another
set (o', ', 81, Sz, S3) of Qu,, if either the two inequalities,

l"'(fo y O, T, Sy ) S3) = l"(fo ’ a’,; rlr S,l ) S;)’

w
(5.13) .
:U'(fl ; a7, S ) S3) = I"(fl 5 al’ r,) N ) 83))
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hold simultaneously, or the two inequalities,
N(fo y @, 71, Sl ’ ‘83) = ”'(fo 5 (l,, rl; S; ) S;),
I"'(fl 3 AT, S1 ) S3) = ”'(fl ) a,: T,: S; ) S;),

hold simultaneously. Otherwise, they are said to be noncomparable. Two com-
parable sets are said to be equivalent, if all four inequalities in (5.13) and (5.14)
hold simultaneously. i

Lemma 4. Given any set (a, v, Si, Sz, S3) in Q,, there is a set
(o', 7", 81, s, 85) tn Qa0 such that the two inequalities (5.14) hold simultaneously.

The proof is trivial, since we can always choose ¢’ = aand 7’ = r.

LEMMA 5. For any set (a, r, Si, Sz, S3) tn Qa,, the number of sets
(@', 7, 81, Sz, 88) 1 Qa0 satzsfymg the two inequalities (5.14) s finite.

PROOF For any set (a/, ', S1, Sz, S3) of Qa0 (or of Q., in general), the
following two inequalities,

V'(fo ) a'l) 7", Si; S;) 2 ra + a',(l - 0[),
F(fl ) a’,) 7", S; ) S;) 2 r"P + a'l(l - ‘P)r

must hold. But, for any set (a, 7, Si, S2, S;) in Q,,, the two quanti-
tiesu(fo; a,r,S1,S:) and u(fi; a,r, Si, S3) are finite. Thus, Lemma 5 follows
from the uniqueness of the set of relative optimum zones for each (a’, ).

From Lemmas 4 and 5, it is obvious that, for each set (a, r, Si, Sz, S;) in
Qa,, , there exists a comparable set (a*, r*, ST, S5, S3) in Q.0 such that the
following two inequalities,

”(fo ) a*) r*’ S;‘ ) S;:) = p'(fo y @, 7, Sl ) S3):
I"(fl ) a*; ’I'*, Sr; S;‘) = ”(fl 3 4,7, S ’ S3):

hold for all sets (a, r, Si, Sz, S;) in Q., which are comparable with
(a*, r*, ST, 87, 8%). Denoting by Q% ,0 the class of all such sets (a*, r* ST,
S5, 83) in Q,,, , we may conclude:

THEOREM 2. The class Q% , 0 is a subclass of Qa,,.0 . Twodistinct sets in Q.0 are
either equivalent or noncomparable.

The class Q5,0 may be called the class of sets of the absolute optimum zomes.
Since there may be many sets of the absolute optimum zones and the determi-
nation of any such set is difficult, we shall assume, throughout the remaining
part of this paper, that a and r are preassigned and the three zones are chosen
according to (5.5), (5.6), and (5.7). We shall also denote by ¢(f) and u(f) the
power and the ASN functions of the test if the three zones are so chosen.

We have seen that, for each («, ¢, a, r), the set of the relative optimum zones
(S1, Sz, S;), when it exists, is uniquely determined. On the other hand, it is
easily seen that, for each (e, a, r), there are an infinite number of sets of the
relative optimum zones (S;, Sz, S;). We shall denote by Qe,q.-0 the class of all
such sets of the relative optimum zones (S;, S:, S;), that is

sz,a,r.o = {Qa',p,a,,- n Qa.w.(); a < @ < 1}'

(5.14)

(5.15)

(5.16)
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The test based on a preassigned (e, a, r) and a set (S1, Sz, S;) will be called the
R. O. (relatively optimum) test with respect to (a, r) for fixed level of significance
a, or simply the R. O. test, if (Si, Sz, S3) €Qaar0-

6. Consistency and existence of Q,,,.q, - In Section 5, we assumed that, for
any given set (o, ¢, a, 7), the class Qq,4.4,» is nonempty. This assumption is valid
only when fy(z) and fi(x) satisfy certain general conditions. On the other hand,
the consistency of the R. O. test depends on the existence of such classes.

Suppose a and r are presassigned positive integers. Suppose the hypothesis
fo(x) is to be tested against the alternative hypothesis fi(z). Again, we shall
assume that fo(z) and fi(x) are continuous, and, for every real number ¢, the
probability measure of the set {z; fi(x)/fo(x) = ¢} under either hypothesis
is zero. Let

(6.1) (ay' ¢l)’ (a: ®2), (a’ ¢3)) b 0<a<egi<l =123~

be a sequence of pairs of real numbers. Suppose there exists a sequence of sets
of the relative optimum zones

(Su, Sa, Sa1), (Siz, Sazy S32), (S1z, Sasy Ssz)y -
(Sli ) Sa: ) ‘S3i) & Qapiiar s i1=1,2, 37 Tty

such that the corresponding sequence of R. O. tests will have (6.1) as the se-
quence of strengths for testing fo(z) against fi(x). Let the corresponding sequences
of ASN functions be

(6.3) p1(fs), wa(fs), wa(fi), + =+ t=0,1.

We shall say that the sequence of R. O. tests is conditionally consistent, if for
any alternative fi(z), the sequences of inequalities

(6.2)

(6.4) pm(fs) < pe(fs) < we(f) < --+, t=0,1,
imply the sequence of inequalities
(6.5) < <3< e,

This definition is equivalent to

Dermirrion II. The R. O. test is said to be conditionally consistent, if, for any
fixed level of significance o and any alternative fi(z), the power function ¢(f;)
of the R. O..test increases whenever the ASN functions u(f:), for 7 = 0 or 1,
increase.

The following two lemmas apply to the R. O. tests.

LemmMa 6. For a fixed level of significance a and fized alternative fl(x), the power
function o(f1) is a monotone increasing function of Iy .

Proor. From (4.2), it is evident that in order to prove Lemma 6, it would
be necessa.ryand sufficient to prove that, under thegiven conditions, if (S;, Sz, Ss)
and (S1, Sz, S3) are two different sets of the relative optimum zones such that
I o > Ip, then A1/R;1 < A:i/R:. Now, since the level of significance o remains
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fixed, then, by (4.2), the equality (5.9a) holds. Therefore, there exists 0 < p < 1
such that

(6.6) Ag = pAy, Ry = pRs.
By (5.5) and (5.7), these equalities imply that

(6.7) Aj < pAy,  Ri> pR:.
Consequently, we obtain

(6.8) Ai/Ry < Ai/Ry,

which completes the proof of Lemma 6.

LemMma 7. For a preassigned level of significance «, the ASN functions u(f:)
for © = 0 or 1 are monotone increasing functions of I .

Proor. Increasing I, decreases S; and S;, and therefore Ao, Ry, 4, and R, .
Thus, Lemma 7 follows using Lemma 2.

TueoreM 3. The R. O. test is conditionally consistent.

This theorem follows directly from Lemmas 6 and 7.

Conditional consistency is a rather weak property. It does not assure us that
as the average sample number approaches infinity, the power of the R. O. test
approaches one. Hence, a stronger property is desirable.

Derintion IT'. The R. O. test will be said to be absolutely consistent, if, for
every fixed level of significance « and every given alternative fi(x), the power
function ¢(f;) tends to 1 as the ASN function u(f;) tends to .

Although the R. O. test is conditionally consistent, it may not be absolutely
consistent. We shall verify this assertion by an example. But first, let us state an
obvious but useful lemma. ‘

LemMa 8. For a fixed level of significance o, if (S1, Sz, S3) is a set of relative
optimum zones and if (S1, Sz , S3) is any other set of the three zones such that Iy =

I, then we have
(6.9) o(fi; a,7r,8,8) 2 e(i; ar, S;, S;)

This lemma, is obviously true by (4.2), (5.5), (6.6), (5.7) and (5.9a).
The following example shows that the R. O. test is conditionally consistent,
but not absolutely consistent. Let a class of pdf’s be given as follows:

(6.10) 4 f(x) = 8 + 2(1 — 6)z, 061 0<z<l.
Let the hypothesis

(6.11) ‘ Hyf =1

be tested against the alternative hypothesis

(6.12) Hy0 = 6, 0<6 <1.

Clearly, this is equivalent to testing the uniform density fo(x) = 1 against the
alternative fi(x) = 6 + 2(1 — 6,)x. Since the ratio fi(x)/fo(x) = fi(x) is a mono-

¥
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tone increasing function of x, then any set of the relative optimum zones will
have the form S; = (0, ), S, = (x, «'), and S; = (2, 1). Furthermore, since,
for fixed «, both S; and 8; must satisfy the equality

(6.13) Ry = N\,
where \ is determined so that o(fy) = «, then z and 2’ must satisfy
(6.14) 2 =1— Az

As a result, we obtain, by (4.2),
B = 1/(1 + A/Ry) = N2 — &) — (1 — 6)azl/
[6, + N2 — 6) + (1 — 6)(1 — AD)a].
Taking the limit on 8; in (6.15), we obtain :
(6.16) lim B, = 11_1})1 B = N2 —0)/(6:. + N2 — 6)) =p* < 1.

Ip—1

(6.15)

Hence, we have

B ola4r—-1D a1
* *
617) max o) S 0% ¢* = [ ST 0 = T <L
Thus, by Lemma 8, for a given set («, ¢, a, r) with ¢ > ¢*, the class Qa,¢ 0. I8
empty, that is, for the given pair (a, r), there is no set of the three zones giving
strength (a, ¢) for testing fo(x) against fi(x). Therefore, the R. O. test can not be
absolutely consistent, though it is always conditionally consistent.

In the following, we give a necessary and sufficient condition for the existence
of Qa.0.0,- fOr an arbitrary set (o, ¢, a, r) and also a necessary and sufficient con-
dition for the absolute consistency of the R. O. test.

THEOREM 4. A necessary and sufficient condition for the existence of Qea,p.0,r T8
that there exists a number k > 0 such that (A) the probability measure of the set
w = {x; fi@)/folx) S kBo/(1 — Bo)} s positive under either hypothesis and
(B) the probability measure of the set wy = {z; fi(x)/fo(x) = kB1/(1 — B1)} is posi-
tive under either hypothesis, where 8; = 1/(1 + Ai/R:) for ¢ = 0 or 1 are deter-
mined from (4.2) so that the R. O. test would have strength (a, ¢) for testing fo(x)
against fi(x).

Proor. i) Sufficiency. Since the power functions are continuous under the
assumptions, then, from Lemmas 6 and 8, it is clear that in order to prove the
existence of Qa6 , it would be sufficient to prove the existence of Qe .0, ,
where ¢’ = ¢, that is, it is sufficient to show that we can find a set of relative
optimum zones (81, S5, S3) such that the following are satisfied:

6.18) (a) Ao/Ro = (1 — B)/Bo, (b) AY/Ri =< (1 — B)/B:.

, Now, if conditions (A) and (B) hold, we can choose a subset S 1 € w, and a subset
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S3; C w; such that (6.18a) is satisfied. Consequently, we have
(6.19) Ay < AkBo/(1 — o),  RiZ RokBi/(1 — By).

Therefore, the inequality (6.18b) holds.
ii) Necessity. Conversely, if the class Qa,y,q,» exists, then, by Lemmas 6 and 8,
a set of relative optimum zones (87 , S7 , S3) exists such that

(6.20) AT/RS = (1 — B0)/Bo,  AT/R1 = (1 - B)/A
hold. Consequently, there exists a number & > 0 such that we have
(6.21) AT/AT = kBo/(1 — Bo),  RY/Rd Z k8/(1 — Bo).

Therefore, there exist subsets w; C 87 and w; C S3 such that conditions (A)
and (B) are true.

THEOREM 5. A necessary and sufficient condition for the absolute consistency
of the R. O. test is that at least one of the following two conditions s irue:

(A) for every positive €, the probability measure of the set

wy = {z; f@)/fo(x) £ €

18 positive under either hypotheszs,
(B') for every posttive €, the probabzhty measure of the set

ws = {x; f1(2)/fo(@) Z ¢}
1s posttive under either hypothests.

Proor. i) Sufficiency. By (4.4), it is seen that the ASN function u(f;) tends
to infinity only if at least one of the two quantities 4; and R, tends to zero.
Hence, by (4.2), it is obvious that in order to prove the sufficiency it would be
sufficient to show that, for every given level of significance « and every alterna-
tive fi(x), the ratio A1/R; tends to zero as R, tends to zero. Clearly, for a fixed «,
the ratio A¢/Ry remains fixed. Let

(6.22) Ao/Ry = d,

where d is a constant. Then, by (5.7), R; — 0 implies Ry — 0. By (6.22), By — 0
implies A9 — 0. Finally, by (5.5), Ao — 0 implies A; — 0. Furthermore, if (A’) is
true, then

(623) . lim R]/Ro > ]. lim A]/A() = ().

R0 R -0
If (B’) is true, then
(624:) lim R1/Ro = 0, lim A]/Ao < 1.

R -0 R0
yConsequently, in either case, we obtain
(625) lim Al/Rl = ]lm d(Al/Rl)(Ro, A ) =d hm (rll/Ao)/(Rl/Rn) = 0.

R0
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ii) Necessity. The necessity can be easily proved by contradiction. Assume
both (A’) and (B’) are not true. Then, the ratio fi(x)/fo(x) must be bounded. Let

(6.26) L = glb. {i@)/f(x)}, U = lub. {fi(z)/fo(z)}.
Choose a set (e, ¢, a, r) such that
(6.27) Bo/(L — Bo) < L, B/ —p1) > T,

where, again, 8, and 8; are determined from (4.2) so that the R. O. test should
have strength (@, ¢). Then, we can not find a k& > 0 such that (A) and (B) in
Theorem 4 hold simultaneously and hence the class Qq,,,q,» is empty. This con-
tradicts the assumption that the R. O. test is absolutely consistent. Thus, the
necessity of either (A’) or (B’) is established.

From Theorem 5, it is seen that unless (A’) or (B’) is satisfied, the R. O. test
can not be absolutely consistent. However, for practical purposes one may
modify the procedure and thus obtain a R. O. test with a specified strength
(a, ¢). The following are two of the possible modifications:

(a) Increasing a and/or r. The power function is in the form of the incomplete
beta function. Thus, for an arbitrary pair (e, ¢), it may be possible, by increasing
a and/or r, to decrease the difference between 3o and B, so that, for some & > 0,
the conditions (A) and (B) in Theorem 4 are satisfied.

(b) Taking the observations in groups. When observations are taken in groups
of size n, one may apply the R. O. test on some appropriate statistic so that the
R. O. test will have the specified strength (a, ¢). This is because sometimes for
some appropriate n, the pdf’s of the statistic under the null and the alternative
hypotheses may satisfy the condition in Theorem 4. Usually, this is true when
n is sufficiently large.

7. Applications. The R. O. test procedure may have a wide variety of appli-
cations. In testing a simple hypothesis, the procedure is applicable whenever the
pdf under the null hypothesis and the ratio of the pdf’s under both the null
and the alternative hypotheses are determinable, especially when the condition
in Theorem 5 is also satisfied. For example, let n(z; 6, ¢”) be the pdf of a normal
distribution, that is,

n(z; 0, ¢°) = 712_;;exp<— %é(x - 0)2>, —o <z < o,
where ¢” is known, and let the hypothesis Hy:0 = 6 be tested against the alterna-
tive hypothesis Hy:0 > 6. For § > 6y, the ratio n(z; 6, o*)/n(z; 6o, o) is a
monotone ‘increasing function of x, and both (A’) and (B’) in Theorem 5 are
satisfied. Hence we can apply the R. O. test by taking the three intervals (— o,
), (1, %), and (2, ©) as Sy, S», and S;, where 2; and x, are determined
so that, for fixed “a” and “r”, the R. O. test will have a preassigned strength
(o, @) for testing 8 against some alternative 6, where 6; > 6, . The determination
of 2, and 2 can easily be made by trial and error, since x; is a monotone decreas-

K4
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ing funection of ¢ and z. is a monotone increasing function of ¢, for a fixed level
of significance «. For instance, if (e, ¢, a, 7) = (.05, .95, 1, 1). then, z; and 2,
should be so determined that the following two equalities are satisfied:

(7.1) 1/1 + Ao/Ro) = 05, 1/(1 + Ai/Ry) = .95,
where 4, A1, Ry and R, are given by

2 ©
(7.2) A; = f n(z; 0;,0") dv, Ri= f n(x; 0;, o) da. i=0,1,
L o .
Thus, if 6, = 6, + 20, then, by the use of the normal probability table, the ap-
proximate values of z; and x, are found to be z; = 6y + .093¢ and z, = 6 +
1.907¢.

If a composite hypothesis is to be tested, sometimes one may also apply the
procedure if it is possible to take the observations in groups and a similar region
can be found. For instance, the central {-distribution is used in testing the loca-
tion of the mean of a normal distribution with unknown variance and the x°
distribution will be used in testing the variance of & normal distribution with
unknown mean.

The following two examples illustrate the application of the test to the non-
parametric and multisample problems.

ExampLE 1. (Test of the location of the median of a population.) To test
whether the median » of a population is equal to or greater than »,, one can
take the observations in groups of size n and call an observation 0 if it is less
than », and 1 otherwise. Under the null hypothesis, the sum X of the observa-
tions has the binomial density f(z) = (z)()", forxz = 0, 1,2, --- , n. By group-
ing the n 4 1 points (0, 1, 2, - -+, n) into three different zones, the proposed
test is applicable.

ExampLE 2. (Comparison of two populations.) Suppose X; < X, < --- < X,
and Y; < Y, < --- < Y, are the ordered results of two random samples from
populations having continuous cumulative distribution functions F(z) and G(x)
respectively. Let s;, 82, - - - , 8, be the ranks of the observations of X. Let W =
81 + 82 - -+ + s.. Denote by h(z) the pdf of the random variable W. Let the hy-
pothesis Hy:F(z) = G(z) be tested against the alternative hypothesis H;:F(x) >
G(x). Then, since the density ho(x) of W under H, is known, one may apply the
test procedure as follows. Choose two positive integers @ and r. Decide on two
numbers w’ and w” such that

Pr(W < w'|Hy) = Ao, Prw’ = W = w" |Hy) = I,

‘ PI‘(W > w” |Ho) = Ro,
and such that the pair (¢(fo), u(fo)) satisfies certain conditions. Continue to
draw samples of sizes (n, m). At each stage, count the number of times that

W<w,w =W = w” and W > w”. Denote these numbers by ¢;, ¢c. and ¢; .
Then, the proposed test is applicable.

(7.3)
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We note that the procedures used in Examples 1 and 2 are not necessarily
optimal. They are given here as possible applications of the proposed procedure
in general.

8. Efficiency. In this section, we shall investigate the power efficiency of the
R. O. test as compared with Wald’s sequential probability ratio test.

Let N(z; 6, ¢”) be a cumulative normal distribution with an unknown mean
6 and known variance ¢°. Let the hypothesis Ho:0 = 6, be tested against an
alternative hypothesis Hy:6 = 6, . We shall calculate the numerical efficiencies
of the R. O. test for the five cases: 6; = 6y + Ao, A = 1.0, 1.5, 2.0, 2.5, 3.0.
For each A\, we shall denote by ¢(8) and »(#) the power and the ASN functions
of Wald’s sequential probability ratio test, and by ¢;(8) and u:(6) the power
and ASN functions of the R. O. test for 4 = 1, 2, where by ¢ = 1, it is meant
a = r = 1 and similarly by ¢ = 2 ismeant a = r = 2. Furthermore, let (.05, .95)
be the preassigned strength of all the tests, that is, for each A(A = 1.0, 1.5, 2.0,
2.5, 3.0), we have ¢(6)) = ¢i(6y) = .05 and ¢(6s + Ao) = ¢i(6 + Ao) = .95
(¢ = 1, 2). Then, it is obvious that for any real 6, the functions ¥(8), 1(6), ¢:(8)
and u:(0) (¢ = 1, 2) depend not only on £ = (6 — 6)/c, but also on A (i.e., on
H,). In Tables I and II are given the numerical values of these functions for
A = 1.0, 1.5, 2.0, 2.5, 3.0 and selected values of £. Since the power curves for
both the sequential probability ratio and the R. O. tests are close to each other

TABLE I
Sequential Probability R.O. Test
Ratio Test
£ a=r=1 a=r=2
20} () ¢1(6) #1(0) &1 ©2(0) H2(0) &
0 .0500 5.2997 .0500 57.4197 .0923 .0500 10.4343 .5079
.50 .5000 8.6695 .5000 117.4618 .0738 .5000 14.9957 .5781
1.00 .9500 5.2997 .9500 57.4197 .0923 .9500 10.4343 .5079
0 .0500 2.3554 .0500 4.2996 .5478 .0500 3.4738 .6780
.50 .2726 | 3.5711 .2733 7.1090 .5023 . 2840 4.4255 .8069
.75 .5000 | 3.8531 .5000 7.7662 .4961 5000 4.6081 .8362
1.00 7274 3.5711 7267 7.1090 .5023 .7160 4.4255 .8069
1.50 .9500 2.3554 .9500 4.2996 .5478 .9500 3.4738 .6780
2.00 9927 1.5473 .9929 2.5203 .6139 .9951 2.6966 .5738
0 .0500 1.3249 .0500 1.7689 7490 .0500 2.4051 .5509
.50 .1866 1.8455:] .1890 2.3713 7783 .2018 2.6881 .6865
1.00 .5000 2.1674 .5000 2.7442 7898 .5000 2.8308 .7656
1.50 .8134 1.8455 .8110 2.3713 7783 .7982 2.6881 .6865
2.00 .9500 1.3249 .9500 1.7689 7490 .9500 2.4051 .5509
2.50 .9881 .9581 .9890 1.3671 .7008 .9922 2.1816 .4392
3.00 .9972 .7320 .9979 1.1566 .6329 .9992 2.0649 .3545
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TABLE I1
Sequential Probability R. O. Test
¢ Ratio Test a=r=1 &
¥ 0) n(6) ¢1(6) »1(0)

0 .0500 .8479 .0500 1.2241 .6927

.50 .1460 1.1119 .1512 1.4095 7889
1.00 .3569 1.3484 .3617 1.5770 .8550
1.25 .5000 1.3871 .5000 1.6040 .8648
1.50 .6431 1.3484 .6383 1.5770 .8550
2.00 .8540 1.1119 .8488 1.4095 .7889
2.50 .9500 .8479 .9500 1.2241 .6927
3.00 .9840 .6515 .9862 1.1007 .5919
0 .0500 .5889 .0500 1.0452 .5634

.50 .1232 7396 .1324 1.0874 .6802
1.00 .2726 .8928 .2860 1.1318 7888
1.50 .5000 .9633 .5000 1.1519 .8363
2.00 .7274 .8928 .7140 1.1318 .7888
2.50 .8768 .7396 .8676 1.0874 .6802
3.00 .9500 .5889 .9500 1.0452 .5634
3.50 .9807 4718 .9846 1.0185 .4632
4.00 .9927 .3868 .9961 1.0060 .3845

in all the cases considered, then
8.1) & = 1(0)/m(8), & = 1(6)/p(6),

as given in the tables can be regarded as the approximate power efficiencies.

From Tables I and II, we observe the following:

(a) In order to obtain high efficiencies, it seems that, when both types of error
are fixed and the difference (6, — 6)/0 is small, one should make a and r large.

(b) Some of the figures in the tables are misleading. It is clearly true that no
matter which procedure is used, one has to take at least one observation before
a decision can be made. Hence, the ASN in either case must be at least one.
However, some of the figures for Wald’s case are less than one, which can not
be regarded as practical. Therefore, in the case 6, = 6, + 30, the efficiencies will
be at least .87 uniformly if we assume that ASN is at least one.

(c¢) If one is interested in improving the efficiency, say, for testing the hy-
pothesis Hy:0 = 8, against the alternative hypothesis H1:0 = 6 + %o, then one
may take the observations in groups of size 25 and apply the R. O. test on the
means % (using @ = r = 1). In other words, one is now testing the same null
hypothesis H, against an equivalent alternative hypothesis Hy:0 = 6, + 2.50; .
Consequently, the efficiencies are raised to at least 69 per cent for all alternatives
6 between 6 and 6y + 0.

The author wishes to thank the referee for the helpful comments.
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