RANK SUM TESTS OF FIT

By Cuia Kuer Tsao
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Summary. This paper suggests several ‘goodness of fit’ test criteria, all having
a linear form. The moment generating function and the limiting distribution of
this linear form are obtained in Section 2. The best test criterion of this form for
testing a simple hypothesis H, against a simple alternative hypothesis H, is
shown, in Section 3, to be in general not independent of H; .

The remainder of this paper deals with a special case of the linear form, that
is, the rank sum test criterion. The distribution of this test criterion is derived
in Section 4, its consistency is proved in Section 5, and some numerical asymp-
totic efficiencies are calculated in Section 6. Within a certain class of tests, the
present test is shown, in Section 7, to be uniformly most powerful for a special
family of alternatives.

1. Introduction. To test whether a sample X;, X;, -+ , X, of a random
variable X was obtained from a population having a completely specified con-
tinuous cdf F(z), a number of tests (e.g., [8], [9]) have been based on a procedure
by which the domain of the variable is divided into k sets of sizes so determined
that the probability of each set under the null hypothesis is equal to 1/k.

Evidently, for any given k, there are many possible ways of dividing the do-
main of the variable into sets with equal probabilities under the null hypothesis.
For any given alternative hypothesis and given test procedure, one division
might be better than another. On the other hand, for any given alternative and
given division of the domain, one test might be better than another. We shall
concern ourselves mainly with the latter problem. We assume that some knowl-
edge of the alternative hypothesis is available.

The division used in this paper is as follows. Suppose (i) fo(z) and fi(z) are
two completely specified continuous pdf’s over a space R (which is either R, or
a subspace of R,), and (ii) for every real number ¢ the probability of the set
{x; fi(x)/fo(x) = c} is zero when the distribution is fy(x). Let H; denote the
hypothesis that the sample was obtained from f;(z), for ¢ = 0, 1. Then R is to
be divided into k disjoint sets Sy, Sz, - - -, Sk such that

(L.1) S; = {5 cia > f@/fo@) z ¢},  j=1,2 -,k
where the ¢;, with © = ¢, > ¢ > -+ > ¢ = 0, are so determined that
(1.2) pn = po = -+ = pu = 1/k,
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(1.3) Dij _/;fz(x) dx, j
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Denote by m; the number of the sample values X, , X;, - -+ , X, falling in the
set S;for j = 1,2, --- , k, and Y _m; = m. Several tests based on a linear
form of my , ms, -+ -, m; will be proposed and their properties.studied.

2. Distribution of a general linear form and its asymptotic normality. In this
section we shall derive the moment generating function (mgf) of the linear
form

k
(2.1) L =2 ajm;,
j=1

where a;, a;, - - - a; are real constants (not all equal). We shall further show that
its asymptotic distribution is normal.
TrreorEM 1. Under the hypothesis H; for © = 0, 1, the mgf of L is given by

k m
(2.2) M) = [Z: Dij exp (ajt):l ‘.
iz
Proor. Under hypothesis H;, the distribution of m;, my, --- , m; is known

to be given by the multinomial distribution
k
(2.3) wi(my, ma, -+, my) = m! III (pis)™ /m;\.
e

Hence, by application of the definition, the mgf of L in (2.1), under H; , is given
by M) in (2.2).

TaEOREM 2. Under the hypothesis H; for ¢« = 0, 1, as m — « the distribution
of L in (2.1) approaches the normal distribution with mean and variance

k k k 2
(24) pi =m El a;piy, oi=m [Z: a;pij — <Z; ajpij) :l
I= j= j=

Proor. Let Yy, Y,, -+, Y, be independent and identically distributed ran-
dom variables such that Pr (Y, = a;) = psjforj = 1,2, --- , kand s = 0, 1.
Then L is distributed as Y, + Y, + --- + Y, . Hence, by the central limit
theorem, Theorem 2 is proved.

3. Most powerful test for testing H, against H, . The main purpose of this

section is to show that among the tests which depend only on m;, ma, « -+, my ,
the most powerful test criterion for testing the simple null hypothesis H, against
the simple alternative hypothesis H; is a linear function of my, ms, -+, my,
with coefficients a; as functions of p,; forj = 1,2, --- | k

TrEOREM 3. The best critical region for testing Ho: f(z) = fo(x) against Hy:
f(x) = fi(x) is given by the subset of my, ma, - - - , my:

(3.1) il m; log (1/py,) = ¢,

where c s so determined that the level of significance is a preassigned size .
Proor. By Neyman-Pearson’s lemma and (2.3), it is easily seen that the best
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critical region for testing H, against H, is given by those sets of my, ms, ---,
my, where
(32) i, ma, ) _ g Y ez

) wo(my, mag, + - , M) ot S

for some constant ¢’. Taking logarithms of both sides, we obtain the equivalent
best critical region determined by (3.1).

It is seen from Theorem 3 that in order to find the best critical region, one has
to find first the distribution of the linear function on the left side of (3.1). For
large samples, the distribution can be approximated by the normal distribution,
according to Theorem 2. For small samples, however, the determination of the
distribution is involved.

4, Distribution of the rank sum criterion. In cases where the alternative hy-
pothesis is not specified, the statistic on the left side of (3.1) is not applicable,
since it involves p;,’s. Furthermore, if the alternative hypothesis is stated in the
composite form, no uniformly most powerful test can be found for most of the
known distributions.

However, a class of alternatives may be such that they give rise to the same
division of R (i.e., same sets S;, Sz, ---, Sk). Then a rank sum test criterion
as defined in (4.1) below seems to be a reasonable one to use, since in this case
all the most powerful test criteria have the form (2.1) with the same property:
@m=a=s- S,

The word “rank” is here used in the sense that an observation falling in the
set S; is given the rank j, for j = 1, 2, --- | k. This is different from the usual
usage of the word in two-sample problems. In the latter case, ranks of observa-
tions are determined by their relative positions, while here, ranks are determined
by a given division of the space K.

TueorEM 4. Let

k

(4.1) s = D jmj.

Jj=1

Then, under H, , the pdf of s may be written as

(4.2) g(s;k,m)=k_'"i(—1)' m\(s—1—1k) 41, .
r=0 r -1

m
Furthermore, g(s; k, m) is symmetrical, that is,
4.3) gm + v; k,m) = gkm — v; k,m), v=0,1,---,(k — m.

Proovr. The pdf g(s; k, m) is the coefficient of #* in the power expansion of the
distribution generating function

(44) D(t; k,m) = k™ (g t")m.
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This may be written as

D(t;k,m) = k"1 — )"0 — )™

(4.5) Y S e < )(m -1+ q> frHaHkon—p)

p=0 g=0 m — 1

Letting s = m + ¢ -+ k(m — p), we obtain the pdf
(4.6) g(s; k,m) = k" Z (=1)"" ( )(9 -1 — k(m — p))

p=0 m— 1

Now, setting » = m — p, we get the pdf (4.2).

The symmetrical property (4.3) may be seen from the following argument.
Since g(m 4+ v; k, m) is the coefficient of ¢™** in D(t; k, m), it is the coefficient
of ™ in D(1/t; k, m), and hence the coefficient of ™" in t*™™ D(1/t; k, m).
Thus (4.3) is proved, since

(¥ D(1/t; k, m) = D(; k, m).

b. Consistency of the rank sum test. We shall now show that for any given k
the rank sum test is consistent for a specified alternative or a class of alternatives.

THEOREM 5. Let k = 2 be a preassigned integer. Let the simple hypothesis Hy:
f(x) = fo(x) be tested against the simple alternative hypothesis Hy:  f(x) = fi(z),
where fo(x) and f1(x) satisfy conditions (1) and (ii) in Section 1.

Then, for any preassigned level of significance o, the power u(f1) of the rank sum
test with index k approaches unity as the sample size m becomes indefinitely large.

Proor. By Theorem 2, the statistic s defined in (4.1), under H, for ¢ = 0, 1,
is asymptotically normally distributed. Let N(x; u, ¢) denote the cumulative
normal distribution with mean u and standard deviation . Then, for large m,
the level of significance and the power of the test will be given approximately
by

(5.1) a = N(p — 2a00; po, 00),

(5.2) u(fi) = Nl(wo — m1)/o1 — 2a00/01; 0, 1],

where z, depends only on a, and u; and ¢} for ¢ = 0, 1, are given by (2.4) with
a;j =]

Since the ratio ¢y/01 is constant, then to prove Theorem 5 it is sufficient to prove
that (up — wm1)/o1 increases as m increases, for any k = 2, or equivalently,

k .
(5.3) 2 i(/k = p) > 0, kz2
=
We shall first prove that, for any k = 2,
(5.4) pn > 1/k, pu < 1/k.

In what follows, we shall denote by S the sets defined in (1.1) and by
p$¥ the quantities defined in (1.3), that is,

S = 8;, pi; = pii, J=12,-,k7=01
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Since, by assumption, the probability of the set {z; fi(x)/fo(x) > 1} is positive
when the distribution is fi(z), then by (1.1), (1.2), and (1.3), we have p{; > 1
and p§y < 1. Thus, the inequalities (5.4) are true for k = 2.
For k > 2, we will prove (5.4) by considering the k sets {8}, forj = 1, 2,
, k; the 2k sets {S™) forj = 1,2, .-+, 2k; and the two sets S{® and S5?.
From (1.1), (1.2), and (1.3), it is easily seen that these sets satisfy the following
relations

(5'5) ‘ ik) — Si%) US%?I:)’ CJ S§2k) — S§2).

j=1

Consequently, we find

(5.6) pd = pi? + pi®, E pi;” = pi?.
Since pii® = pi3¥ = -+ = pii? ..., we have

2 2pi 1
(5.7) pif = pit” + pii” 2 E pil? = I;c > .

¥ < 1/k. Hence, the inequalities (5.4) are true

Similarly, we can prove that piy
for any k = 2.

Now, it follows from a special case of the Tchebycheff’s inequality (when
r = 1 in Theorem 43 of [5]) that for any k = 2, the inequality (5.3) is true, since
{7} and {1/k — pi{?} are similarly ordered and Y (1/k — pif) = 0. Thus,
Theorem 5 is proved.

Theorem 5 implies that a one-sided rank sum test is consistent for the case
where the null hypothesis Hy: f(x) = fo(x) is simple and the alternative hy-
pothesis Hi consists of distributions {ff (x)} such that the ratios {r(z) = f1(z)/
fo(z)} are monotonic increasing (or decreasing) functions of x, provided that
conditions (i) and (ii) in Section 1 are satisfied for each fi(z), when fi(x) is re-
placed by f1'(z) there. On the other hand, a two-sided rank sum test also may be
shown to be consistent under the following assumptions.

Suppose it is required to test the simple hypothesis Hy: f(x) = fo(z) against
the composite hypothesis Hi* which consists of two and only two classes C;
and C, of those distributions such that the ratio fi *(z)/fo(z) is a monotonic de-
creasing function of z when fi*(z) is in C; and a monotonic increasing function
of z when fi*(z) is in C . Suppose, also, that for each fi*(x), conditions (i) and
(ii) are satisfied, when fi(z) is replaced by f1*(z). Then, we obtain

THEOREM 6. Let k = 2 be a preassigned integer, and a1 , as , and « be three pre-
assigned positive numbers such that oy + a2 = o where 0 < a < 1. Let ky and hs,
with m < hy < he < km be the values such that

(5.8) th g(s; kym) = ey, ; g(s; k,m) = aa.

Then, the test consisting of rejecting Ho whenever Y, jm; < hy or Sjmg = ke
is consistent for testing Hy against HT™*.
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Proor. Theorem 6 is a corollary of Theorems 4 and 5, considering the two classes
C: and C, separately.
Theorem 6 implies that the two-sided rank sum test is unbiased for testing
H, against HT™ for large samples. For small samples, it may or may not be un-
biased.

6. Asymptotic efficiency of the rank sum test. In this section, we shall com-
pare the rank sum test with one of the standard parametric tests, and obtain
the power efficiency for large samples.

Suppose a sample is to be drawn from a population having a normal distribu-
tion with known variance ¢” and unknown mean 6. Let the hypothesis Hy: 6 =
6y be tested against the alternative hypothesis Hi: 6 = 6, where 6, > 6.
Further, let both the level of significance a« = u(6,) and the power of the test
u = u(6;) be specified in advance, for example, o = .05 and u = .95.

Let M and m be the sample sizes required by the likelihood ratio test and the
rank sum test, respectively. We shall call § = M /m the efficiency of the rank sum
test.

When d = (6, — 6p)/0 is small, so that the sample size m is large, we can use
the normal approximation (5.2) for the power function of the rank sum test.
Hence, m is approximately given by

e AN 16 g T 2
6.1 _ (22 V® =1D/12 + & V2 py; — CF qu)“’)
@ m=( 3+ 1) — 2 spy ’

while M is given by
(6.2) M = (20 + 2.)'0°/ (6 — 6,

where z, and z, depend only on the specified values & = u(6) and u = u(6y),
respectively. Consequently, the efficiency is given approximately by

_ (et zm( 3 + 1) — 2 jpy )
& e/ = D/12 + 2 V2 fipi — CEipa?)

The asymptotic efficiency may be found by evaluating the limit limg .o8.
Thus, letting n(z; 6, ¢) denote the normal density with mean 6 and standard
deviation o, we obtain

THEOREM 7. Let k = 2 be a preassigned inieger. Then, for any preassigned
a and u with uw > a, the asymptotic efficiency (as d — 0) of the rank sum test with
index k 1s given by

63) &

12 [ ’
(64) & = oy S0 0],
where the y;, with © = yo > y1 > -+ > yp = — o, are so determined that
(6.5) N(y;—1;0,1) — N(y;;0,1) = 1/k, j=12 --- k.

Proor. It follows from the definition of p,; that
(66) p1J=N(xJ—1}01’0)_N(xJ)ol)o')’ ]=1;2y}k’ 2'_"0’ 17
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where the z,, with © = 2y > 2, > -+ > 2, = — 0, are so determined that
Equation (1.2) is satisfied. Since limg_.op1; = po; , we have
k 2
6.7) ¢ =lime = 22 | lim (C 21— > ip, /d‘
k2 — 1 a0 2 =1
The limit in square brackets is an indeterminate form. However, the numerator

and denominator satisfy the assumptions of 1’Hospital’s rule. Consequently,
we obtain

k 2
(68) ¢ = | 2 edtntaioas b0, o) — ey 00,0 [,
From (6.5) and (6.6), it is easily seen that y, = (z; — 6)/c forj = 0,1, --- , k.
Thus, the asymptotic efficiency & may be written as
12 k 2
& = g | 50, 1) = nlys30,1) |
=1

(6.9)
12

Tk -1

{i n(yi-1; 0, 1) — knlys ;0, 1)]2.

=1

By assumption, n(yo; 0, 1) = n(yx; 0, 1) = 0. Therefore (6.9) becomes (6.4).
This completes the proof of Theorem 7.

We remark that although the asymptotic efficiency &’ was obtained under the
assumption that a and w are preassigned, it is actually independent of them.

TABLE 1
Power Efficiencies of the Rank Sum Tests

N d
AN 0 a1 2 3 4 5
AN

2 .637 .637 .636 .636 .635 .634
3 .793 .793 .793 .794 794 .794
4 .856 . 856 .857 .857 .858 .859
5 .888 .888 .889 .890 .891 .892
6 .906 .906 .906 .908 909 .911
7 .918 .918 .919 .920 .921 .923
8 .926 .926 .927 .928 .929 .931
9 .931 .931 .932 .933 .934 .936

10 .935 .936 .937 .939 .940 .942

Table I gives the asymptotic efficiencies (d = 0) and certain approximate effi-
ciencies (d = .1, .2, 3, 4, .5) fork = 2,3, - -+, 10. The approximate efficiencies
were obtained under the assumption that & = 1 — u (where « is small).

For 0 < d £ .5, the approximate efficiencies in Table I are very close to the
exact ones. We note also that .637 = 2/ is just the power efficiency of the large
sample binomial test, since the rank sum test reduces to the binomial test when
k = 2 (see also [2], [4]).
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7. Power of a uniformly most powerful rank sum test. We have shown that
the rank sum tests are consistent, and the numerical calculations show that their
asymptotic efficiencies are approximately over 90 % for the normal alternatives,
when k& 2 6. However, these are only the limiting behavior of the tests. Naturally,
the power of the rank sum tests for small samples is also desirable. It is the pur-
pose of this section to investigate the power of the rank sum tests for a special
family of alternatives. This family is so chosen that among the tests which de-
pend only on my, msy, -+, my, the rank sum test is uniformly most powerful
for testing the uniform distribution against such a family.

Let a family of cdf’s be given by

z, A=1,

. F(x; A) =
@ (5 4) tf—D/M—D,A>L 0

I\
8

IIA
p—

Let the hypothesis Ho: A = 1 be tested against -the alternative hypothesis
Hi: A > 1. Then,

TuroreM 8. Among the tests which depend only on my, me, - -+ , myi , the rank
sum tests are uniformly most powerful for testing Hy against Hy . The power func-
tions are given by

m am 1/k . m c*
7.2) w(d; k,m) = K"A™(4 1)

. —s/k
= X, ok ma™

where the level of significance s
(7.3) 2 gls; kym) = a.

Proor. Under Hy, F(z; A) is just the cdf for the uniform distribution on
(0, 1). Therefore, according to the assumptions in Section 1, we have

(k—jk—j+1 .
(7.4) Sj~< L A ) J

1,2 -,k

I

Hence

A(’C—f‘f‘l)/k _ A(k—f)/k A—j/k(A(k+l)/k _ A)
(7'5) P = A —1 - A — 1 y

j=1’2,...’k_

Thus, by (3.1), the best critical region is given by

£ 1
Z m; log <—>
j=1 j

(7.6) v )
= log A" X jm; + mllog (4 — 1) — log (A*™"* — 4)] < .
j=1

Since A > 1 and the second term is constant, we have the equivalent best critical
region determined by

(7.7) 2 jm; < c*.
1
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It is obvious that for any given level of significance « the best critical region
determined by (7.7) is independent of the parameter A. Consequently, the rank
sum test is uniformly most powerful for all A > 1. Thus, we have proved the
first assertion of Theorem 8.

The power function of the test is derived as follows:

k m;
w(d; bym) = X mi [T @27
=1 m;!

k —imjlk (k+1) 1k mj;
A4 — A)™i
—3 '
Z mJI=I1 (4 — l)mimj!

(k+1) [k m k —jmlk
- j=1 ;!
_ (A(k+l)/k _ A)En ml IkI A—jmi/k
(A - l)m =1 kmmj!
Am Al/k -1 mkm c* .
= —((T:T,f~ 2 g(s; b, m)A™",

where the summation Y is extended over all possible combinations of m, , m, ,

-, my such that m < > jm; < ¢* and Y_m; = m. This completes the proof
of Theorem 8.

In Figure 1 are plotted six power curves u(4; k, m) for k = 2, 3, 6 and m =
4, 6, comparing the power curves of the rank sum tests with indices & = 3,6
with that of the binomial tests; when k = 2, the rank sum test reduces to the
binomial test. The levels of significance (nonrandomized) are

w(l;2,4) = 0625, w(1;3,4) = 0617, u(l;6,4) = .0540,
u(1;2,6) = .1094,  w(1;3,6) = .1070, w(l; 6, 6) = .0965.

1.0
0.9 (A16,6—
ULA;6, 7
08 u(A; 3,6}~ ,,/
u(A; 2,657 P
0.7 / 7
=06 L A
E : // 4 ( 6 4)
3 4 71 u(A; »
:"t' 03 / /’\/\*U(A; 3,4)
S04 : - L u(A;2,4)
0.3 y A
0.2 / //
0.1 //

0
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The family of distributions F(z; A) not only yields nice power functions for
the rank sum tests, but also possesses the nice property that A plays the same
role as a location parameter in the sense that the mean u = 4/(4 — 1) — 1/
log A is a monotonic increasing function of A. For, letting y = log A, we have

(7.9) =/ —1) — 1/y,
and hence

(710) W@ =1 ol (@~ 14y — 1 -y
o pe-r yi(er — 1)? '

Now, when y > 0, we have

1 1 1 1
(7.11) & — 1 —ye” = (3_!—722_!>y3+<1_!_.2.3_3!)y4+ .o > 0.

Consequently, x is a monotonic increasing function of y, for y > 0, and hence
of 4, for A > 1.

Since A plays the role of a location parameter, the class of alternatives F(x; 4)
may be regarded as representative of the principal types of deviation from the
null hypothesis. To show the general shape we plot, in Figure 2, five curves of
this family along with five curves of normal alternatives N(z; 6, o), where the
normal distributions are transformed by § = N(z; 6y, ¢). The family F(z; A) is
shown by solid curves, while the family N(z; 6, ¢) is shown by dotted curves.
In the latter case, the letter d represents the distance of the mean 6 from the
hypothetical mean 6, in terms of the standard deviation ¢, that is,d = (6 — 6) /0.

1.0
— >° A
b 08 // ik
S 07 £ / /
+ G ’ ’l
o° 0.6 ,,\ DA 7 7 I’l
N v ;LW /0 // //l
= 0-5 b/ . !
z / //}"/’, o
& 04 LY i B A WA
2 26 M
< 03 S AT
ko 278 LN )
w 0.2 > / 2 V4
)
o.1 A _ o 5’\ //
0 /«4//‘{///7

0.1 0.2‘(—).3 04 05 06 0.7 08 09 1O
X & N(z,eo,o)

Fic. 2
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Figure 2 shows that certain normal alternatives (when d is small) can be ap-
proximated by certain alternatives F(z; A). Therefore, for a fixed level of sig-
nificance their corresponding power curves can be used as approximations to
each other.

The author wishes to express his appreciation to the referee for valuable com-
ments and suggestions.
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