ASYMPTOTIC SOLUTIONS OF THE COMPOUND DECISION PROBLEM
FOR TWO COMPLETELY SPECIFIED DISTRIBUTIONS!

By James F. HANNAN AND HERBERT ROBBINS

Michigan State College and Columbia University

1. Summary. A compound decision problem consists of the simultaneous
consideration of n decision problems having identical formal structure. Decision
functions are allowed to depend on the data from all n components. The risk
is taken to be the average of the resulting risks in the component problems. A
heuristic argument for the existence of good asymptotic solutions was given
by Robbins ([1] Sec. 6) and was preceded by an example (component decisions
between N(—1,1) and N(1,1)) exhibiting, for sufficiently large n, a decision
function whose risk was uniformly close to the envelope risk function of “simple”’
decision functions.

The present paper considers the class of problems where the components in-
volve decision between any two completely specified distributions, with the risk
taken to be the weighted probability of wrong decision. For all sufficiently large
n, decision functions are found whose risks are uniformly close to the envelope
risk function of “invariant” decision functions.

2. Statement and reduction of the problem. The problem of testing a simple
statistical hypothesis against a simple alternative can be formulated as follows.
Let z be a random variable (of arbitrary dimensionality) which is known to have
one of the two distinct distribution functions F(z, 6) for # = 0 or 1. On the basis
of a single observation on z (we consider only the nonsequential case) it is re-
quire to decide whether the true value of the unknown parameter 6 is 0 or 1.

Statistical decision problems of the same formal structure often occur, or can
be considered, in large groups. We shall, therefore, take as a single entity the
following compound decision problem. Let n be a fixed positive integer and let
Z1, -+, z, be independent random variables, each of which has the distri-
bution function F(z, 6) with respective parameter values 6, , - - - , 8, , with 8; =
0 or 1. Let x = (x1,---, x,) denote the vector of observations and
0= (6, -, 0, the unknown vector of parameters; 6 is known to belong to the
set Q consisting of all 2" possible vectors of n components, each 0 or 1. On the
basis of x it is required to decide the true value of 8, which amounts to deciding

forevery ¢z = 1, - - - , n whether 6, = O or 1.
Any vector of n functions t = (f(x), -+, £.(X) is a (randomized) decision
function for the compound decision problem if for ¢ = 1,---,n, 0 =

t:(x) < 1, and if the conditional probabilities, given x, of deciding that 6; = 0
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38 JAMES HANNAN AND HERBERT ROBBINS

or 1 are respectively 1 — ¢;(x) and t;,(x). If for some function {(z), t(x) =
t(x;) for ¢ = 1, ---, n, then t will be called simple and will be denoted by ¢.
We assume the practical background of the problem provides two positive
constants,
a, the loss incurred in deciding “6; = 0’ when the true value of 6; = 1,
b, the loss incurred in deciding “6; = 1” when the true value of 6; = 0.
For any Borel set B we define

2.1) w(B) = [ ar,0), 6=0,1;

(2.2) w(B) = p(B) + m(B).

Since wo and u; are absolutely continuous with respect to the finite measure g,
generalized probability density functions f(z, 0) and f(x, 1) exist such that for
any Borel set B

wB) = [ 1,0 d for 0=0,1.
B
We note that the relation
(23) flz,0) + f(z, 1) = 1, a.e. (u),
is obtainable from the identity in Borel B,

[ 1dn = uB) = w(® + m(® = [ (1, 0) + Sz, 1) d.

The joint generalized probability density function of x with respect to the

product measure u", when the parameter vector is 8 = (6, - - - 0,), is f(x, 8) =
T1if(:, 6:). The expected loss on the sth decision in using a decision function
= (), -+, ta(x)) is, for 2 = 1, -+, m,

Rit,0) = [la0:(1 = 460) + B(1 — 0J4G01(x, 0) du”.

The average expected loss on all n decisions, which we define to be the risk of t,
is therefore
(24) R(t,0) = Ri(t,0) = [ 3 {abil1 — () + (1 — 60100} flx, 0)du”

This is equivalent to defining the loss of the decision d = (dy, -+, ds) In Q,
given 0 in Q, to be

w(d, ) = - E [a6:(1 — di) + b(1 — 6,) di],

since this definition implies that the decision function t induces the conditional
(for fixed x) expected loss

(2.5) W(t(x), 8) = — Z {81 — t(x)] + b(1 — 8.)t(x)}.
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By the remark (2.3), f(x, 0) is expressible as

26) f(x,0) = I"If(x.', 6:) = I:I (0:f(xs, 1) + (1 — )1 = f(z:i, 1))

1

The Halmos-Savage [2] form of the theorem linking sufficient statistics and
density factorization shows that (f(z1, 1), ---, f(z., 1)) is a sufficient statistic
for 6 in Q. Let

z= (21, ", 2m), zi = f(z:, 1);
2.7 vo(I) = pe(z | f(z, 1) in I), for all Borel sets I; 6 =0, 1;
w(I) = w(I) + »().

It is easily verified (see [3] Sec. 32) that the sufficient statistic z (and, conse-
quently, the measures », v, and ») is independent of the choice (2.2) of an
underlying measure u relative to which u, and u; are absolutely continuous.
We note that z has, with respect to the product measure »", the generalized
probability density

@28) d(z, ) = III Bz + (1 — 6)(1 = 2)).

Returning to (2.4) we see that the vector of conditional expectations
Elt(x) | z] = (E[a(x) | 2], <+, Elta(x) | 2])

is a decision rule having the same risk as t. We denote this rule by t(z) = (t(z),
- -+, t.(2z)) and, using (2.5) express its risk,

R(t,0) = f W(t(z), 0) d(z, 8) dv"
(2.9) = gz ; f (1 = t(z)) d(z, 8) &" + %Z a - o)

. f 1:(2) d(z, 0) dv™.

3. Simple decision functions. If t = ¢ is a simple decision function, then (2.9)
simplifies to

(31) R(t0) = % Z:: 0: f 1 = #z)zdv + % Z:: (1 -9 ft(z)(l - 2) dv.

Setting & = (1/n)Y_0; = proportion of 1’s among the n components of 8, we can
write (3.1) in the form ,

(32) R(t, 0) = f a1 — 2)z + b(1 — D)1 — 2) db.
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The value 8 is necessarily rational, of the form k/n fork = 0, --- , n. We now
define for any real number p such that 0 < p < 1, and any v-measurable function
t(z) such that 0 < #(z) < 1, the expression

(3.3) B(t, p) = f ap(l — 2))z + b(1 — p)ie)(1 — 2) dv.
Thus (3.2) becomes
(3.4) R(t, 0) = B(t, 0).

From (3.3) it is clear that for any fixed p, B(¢, p) is a minimum if and only if for
almost every (v)z, i(z) is of the form

1, if apz > b(1 — p)(1 — 2);
(8.5) t,(z) = <0, if apz < b(1 — p)(1 — 2);
arbitrary,  if apz = b(1 — p)(1 — 2).

The minimum value of B(t, p) is

o(p) = B(t,, p) = fmin [apz, b(1 — p)(1 — 2)] dv

c(p) c(p
=apfo & + (1 —p)(l —fo dm,)

where C(p) = b(1 — p) /[ap + b(1 — p)] for 0 = p = 1. It follows from (3.4)
that, for any simple decision function ¢ and any 6 in Q,
(3.7 R(t, 0) = ¢(6),

equality holding if and only if #(2) is of the form (3.5) with p = 6.
We shall now establish some properties of the function ¢(p) defined for 0 =
p=<1by@B6).For0 =p<p.=1,and0 <s <1,

(3.6)

s min[apz, b(1 — p)(1 — 2)] + (1 — s) minfapz, b(1 — p2)(1 — 2)]
minfaspiz, bs(1 — p))(1 — 2)]

+ min[a(1 — $)pz, bl — )1 — p2)(1 — 2)]
minfa{sp1 + (1 — 8)pafz, {1 — spr — (1 — $)p2} (1 — 2)],

with strict inequality if and only if p1 < C(2) < p. (or alternatively C(p:) <
z < C(p1)). Integrating with respect to » we obtain from (3.6) that ¢ is a con-
cave function of p,

(3.8) sp(p) + (1 — s) ¢(p2) < d(spr + (1 — 8)pa),

with equality if and only if [z | C(p:) < z < C(p1)] = 0. Since ¢(0) = ¢(1) = 0,
this implies

(3.9) o(p) > 0, 0<p<l, unless [z |0 < 2z < 1] = 0.

IIA
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The exception here is the trivial case where », and » (and hence yo and ;) are
disjoint measures.

The continuity of ¢(p) can be established in the following form. If 0 < p < p’
< 1,then0 = C(p’) < C(p) = 1and

minfazp, b(1 — 2)(1 — p)] — minlazp’, b(l — 2)(1 — p")]

—az(p’ — p), 0=z<Cl);
= <¢b(1 — 2)(1 — p) —azp/, C(p') =2 = Cp);
b1 — 2)(p" — p), Clp) <z= 1

Hence it follows that, for 0 < z < 1,
— az(p’ — p) < minfazp, b(1 — 2)(1 — p)] — minfazp’, b1 — 2)(1 — p")]
S b1 = 2)(@" — p).

Integrating with respect to », we obtain

(3.10) —a(p’ — p) £ ¢(p) — ¢(p) = b(»' — p), ' > p.
Interchanging p and p’, multiplying by —1 achieves
(3.11) =b(p — p) = o(@) — ¢(p) = alp — P), ?' <p.

From (3.3) we have, forany 0 < p, p’ £ 1,

Blty, o) — ¢0) = [ (& = plall = 4,z — bip()1 = 2)} b

(3.12) - —p) f (a(l = 4,(2))z — b,()(1 — 2)} v,

- {(p’ —pa, P > p;
S le—=2%, P <p
The last three inequalities, (3.10) to (3.12), and the definition of ¢ imply
0= Bl,p)—¢@)=@+b|p—17p|
From (3.4) it follows that for any 0 < p < 1 and any 6 in ©,
0<RE,0 —¢0) <@+b)|p—0]

Thus, we have proved
TrEOREM 1. Suppose that in some manner an approximate value p of the true
proportion 8 is known. Then the statistician who uses the simple decision function
= t, will achieve a risk R(t, , 8) which is within (@ + b) | p — 8 | of the minimum
attainable risk ¢ () in the class of all simple decision functions.

4. “Consistent” estimation of a proportion. We use (without loss of generality)
the canonical form of the problem (see (2.6) to (2.9)), assuming only that the
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original measures, uo and y; , are not identical. Thus we are concerned with the
random vector z = (z, ---, z,) having the density d(z, 0) defined by (2.8).
We consider the problem of finding an estimator p.(z) for the proportion 8 of
1’s in the first n coordinates of 0.

Since our principal interest is in the asymptotic estimation problem, we will
consider the sequence of problems defined forn = 1, 2, --- as embedded in the
probability space of infinite sequences z = (2, 22, -++ ) with p-measure in-
duced by the density d(z, 8) defined on the first n coordinates of z and 6, re-
spectively. We emphasize this aspect in this and the following section by re-
ferring to 0 in Q, .

Avoiding a discussion of “optimum’’ estimation, we devote this section to the
consideration of a subclass H of the class U of all unbiased estimators of 8.
This subclass H is to be the class of all estimators of the form

(4.1) F(z) = ; h(z),

S

where h(z) is an unbiased estimator of 8.
As a measure of the risk of an estimator in H we use its variance,

4.2) nVark(z) = 8 Va(h) + (1 — B) Volh),
where Vi(h) = [ (h(s) — 1)* dn and Vi(h) = f (h(2))* dw . We single out an

interesting subclass of H by investigating the existence and representation of
elements k& minimizing, for fixed p, with 0 < p < 1,

(4.3) pVi(h) + (1 — p)Vo(h).
For any pair of real numbers A = (A, A1) we define an extension of (4.3) to the

set of all g(z) such that f lg(@)| dv < e

Falg) =p[fg2dy1—1]+(1—p)fg’duo—ml[fgdul-q]

(4.4)
—2)\0 f g dllo.

Using the density representation of these integrals and the restriction on the
domain of g, we have

R = [ ¢@lpz + (1 = p)1 = 2] = 2@z + N1 — 2)]

dv — P + 2)1.

(4.5)

For fixed \¢ and \; the integrand hereis a minimum, for each fixed z, if and only if

Az + No(1 — 2)
(4.6) g9(2) = gx(z|N) = pz + (1 —p)(d =2’

a.e. (»).
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Since g,(z |A\) = max [[M], [No|] / min [p, 1 — p], we find that g,(2|7) is a
unique (v) minimum of Fy(g) over its domain. If there exists a determination of
Mo and A; such that g,(z | N) is an unbiased estimator of 8, we will denote it by
h,(z). Then we have for all unbiased h

47) pVi(h) + (1 — p)Vo(h) = Fr(h) = Fi(hy) = pVilhy) + (1 — p)Vo(hsy),

where equality holds only if h(2) = hy(2) (»).
The estimator gx(z | ) will be unbiased if A\, and A, satisfy

xlf 2 dVi+)\of 1-2 -

(4.8 pz+ (1 — p)(1 — 2) pz+ (1 — p)d — z)

The determinant of these equations is
2 2
[f 2(1 — 2) dy] j‘ 1 -2)
pz+ (1 —p)(1 -2 Pz+(1—p)(1—z)

f z d
pet+ A —pd—2 "

It is nonpositive by the Schwarz inequality. If it is equal to zero, zand 1 — 2
are linearly dependent a.e. (v). Since z and 1 — z are densities, linear dependence
would imply that » and » are identical; this possibility has been excluded here.

Thus, an explicit representation of estimators in H, minimizing (4.2) for
0 such that # = p, is obtained as

Zl: ho(2:), 0<p<l,

S|

hy(z) =

where h,(z) = g,(z|\), and A is a solution of (4.8). This class of estimators
merits our interest since each is admissible relative to H and each satisfies the
following theorem.

TraeorEM 2. Let h(z) be any estimator in H such that |h(z)] + 1 < M < o,
Define

0: B(Z) < 0;
Pa(z) = {k(2), 0=hkz) =1
1: 1< E(Z),

Then, (@) 0 < pa(2) £ 1, and (b) for any ¢ > O there exists an N(e) such that,
for any 6 in Q,, ,
Pri|pa(z) — 8] > ¢ for some n = N(e)] £ e

Proor. It will clearly be sufficient to show that k(z) satisfies part (b). For this
purpose we introduce ki(k) fori = Oor 1 and k = 1, 2, - - - to denote the arith-
metic mean of k£ independent random variables, each having the probability
measure v;h . We express

R@) = (1/n)2 [0h(z;) + (1 — 6;)h(z)]
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(4.9) =82 0hz) /20 + A — 021 — 6)h(z;) /221 — 6;)
(4.10) h(z) — 8 = §[h(nd) — 1] + (1 — B)he(n — nd).

The strong law of large numbers yields the existence of functions Ni(n) and
No(n), defined for 7 > 0 and such that
(4.11) Pr{lhk) — i > n  for some k = Ni»n) <9, ¢=0,1.
_We fix ¢ > 0 and consider the term 8[h1(n8) — 1] of (4.10). Since § < 1 and
|hi(n) — 1| £ M, we have
(4.12) |0lh(nB) — 1]| £ min {8M, |08 — 1|}
Hence, for any fixed integer N and any fixed point 0 in Q,, , if z is such that there
exist n, = N with 0[hi(n8) — 1] > €/2, then
nd > nM 'e/2,  |h(nd) — 1] > ¢/2.

Hence there exists & > NM '¢/2 such that |hi(k) — 1| > €/2. Consequently
Pr{6[A(nf) — 1] > ¢/2 for some n = N}

< Pr{|fa(k) — 1| > ¢/2 for some k > NM '¢/2}.
Thus, if N = 2M¢ 'Ni(e/s), it follows from (4.11) for ¢ = 1 that the right side
of (4.13) is less than ¢/2 uniformly for all 8 in Q, .

We can deal in a similar fashion with the term (1 — 8)ho(n — n8) of (4.10).
Thus we obtain that part (b) is satisfied by

(4.14) N(e) = 2M €™ max [N1(e/2), No(e/2)].

b. Nonsimple decision functions t. We have seen in Section 3 that if p is a
good approximation to 8, then the simple decision function t = ¢, (see (3.5))
does about as well as is possible for any simple decision function. Although a
good approximation p to 8 is not generally available to the statistician, we have
seen in Section 4 that for large n a good estimator p,(z) of 8 is always available.

It is natural to combine these two results by using the decision function ¢, with
the constant p replaced by the random variable p.(z). This amounts to using the

(413

nonsimple decision function * = (t(z), - - - , tx(z)) such that for ¢ = 1. - | n,
1, if z; > C(p.(2)),

(5.1) tf(z) = C
0, otherwise.

(We have chosen, arbitrarily, one way of resolving the ambiguity in the definition
(3.5) when z = C(p).)
In practice, t* can be used only when all the values z, - -+, 2, are known
before the individual decisions on the values of 6;, - -+, 6, have to be made.
We shall now investigate the behavior, for large n, of the risk function R(t*, 6).
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We begin by considering the loss of the decision rule ¢, (determined by (3.5)
and by ¢,(C(p)) = 0), where z is observed and 0 is the true parameter point.
From (2.5) we obtain

W(ty(z), 8) = a3 0.1 — t,(2:)) / 28]
(5.2) + 51 — R — 8)8,(z) /221 — )]
= abS:(C(p) | nb) + b(1 — B)[1 — Su(C(p) | n — nb)],

where S;(v| %) is the sample distribution function of % independent random
variables, each distributed with probability measure »;for7 = Qorland k = 1,
2, - - - . For future use we define

(5.3) Di(k) = sup [Sl(v]k) - [0 ' dul], Dy(k) = sup [/0 " v — So(vlk):l.

0<v<1 0<v<1

Using an alternative form of (3.3), it follows from (5.2) that

_ B c(p)
wmnw=w§m@mm—£ w}

~C(p)
+MLJKL(M—&mwM—Mﬁ+M%w

Hence, from (5.3) and Theorem 1,
W(t,(z), 8) < abDT(nf) + b1 — 6)Ds(n — nb) + ¢(8) + (@ + b)|[p — 9] .

Since this holds for each 0 < p =< 1 we have, for any estimate p.(z) satisfying
(a) of Theorem 1,

(54) W(tp(z), 0) < abDI(nb)
+ b(1 — 9)Dy(n — nB) + ¢(8) + (a + b) |pa(2) — 8] .
By the Glivenko-Cantelli Theorem [4]
Pr [lim Df(k) = 0] = Pr lim Dis(k) = 0] = 1.

k=00

This is equivalent to the existence of functions N7 (n) and Ng(n), defined for
n > 0, such that

Pr[Df (k) > n for some k = Ni(n)] < u,
Pr{Dy (k) > 5 for some k = No(n)] £ 7.
Asin (4.11) to (4.14), we have that if
N*(e) = 2¢” max[aN1 (e/2), bN (¢/2)], €>0,
then, for any 6 in Q o,

(56.5) Pr[abDf(n8) + b(1 — 8)Dy(n — nb) > e for some n = N*(¢)] £ e
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Returning to (5.4) we see that, for any p.(z) satisfying the conclusion of
Theorem 2, (5.5) and Theorem 2 combine to furnish for any ¢ > 0

no(e) = max[N*(e/2), N(e/2(a + b))]
such that, for any 0 in Q. ,
(5.6) Pr{iW(t,,y(z), 8) — ¢(8) > € for some n = no(e)} = e

The argument from (5.2) onward proves

THEOREM 3. If p.(z) satifies the conclusions (a) and (b) of Theorem 2, then the
decision function t* defined by (5.1) is such that to any ¢ > O there corresponds an
no(€) such that for any 0 in Qe

Pr{Ww(t*(z), 0) < ¢(8) + eforalln = ne(e)} = 1 — e

Since W(t*(z), 8) < max [a, b], Theorem 3 implies
TrEOREM 4. Under the assumptions of Theorem 3, t* is such that to any ¢ > 0
there corresponds an ny(e) such that for any n = ni(e) and any 8 in Q,

R(t* 0) < ¢(0) + e

Thus, t* is a nonsimple decision function which for large n does about as well
as could be done by any simple decision function even if § were known exactly.

6. Invariant and R-invariant decision functions. Let (P(1), ---, P(n)) be
an arbitrary permutation of (1,---, n). Define, for any real vector
E= (’Slv T ygﬂ)y
(6.1) PE = (k8 , " * 5 Ep(m)-

From (2.5) and (2.8) we note that W(Pt, P8) = W(t, 8) and d(Pz, P8) =
d(z, 8). From (2.9) we obtain for any decision function t, by a change of variable
of integration,

R(t, Po) = f W(t(z), Po) d(z, P8) dv"
(6.2)
- f W(t(Pz), Po) d(Pz, P8) & = R(P™P, 6).

We call a decision function t snvariant if P"'tP = t for all P. We denote by
R-inwariant a decision function t such that

(6.3) R(PT'tP, 8) = R(t, 0), for all P and 6.

The risk of an R-invariant decision function can be expressed as an explicit
function of 8 by formally averaging the representation (2.9) over all P. From
(2.9), (6.2), and (6.3),

(64)  R(,0) = = TR, Po) = - 3 [ Wt(a), Po) dlz, Po) .
P s P

n!
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Changing the order of summations and integration, we find that if t is R-in-
variant its risk, B(t, ), is expressible in the form

R(t, 0) = :']'; i f {a 1- t‘(Z) ; 0P(t') d(zy Po)

n!

(6.5) :
+b ‘1(1—%) }; (1 — Open) dlz, Po)} "

For any real vector r = (ry, - -+ , r») we define for every integer &

1 k n
Ll my ) = {mi 5 Ao [T = o), k=01, n
0, otherwise;
L(k:n_ 17;‘5’: L[k:n— 1: (rl) T, Tig1, o ,T,.)], 1= 1)27 e, N
Then
2 Opc d(z, PO) = 2z, D 11 ez + (1 — 6p5)(1 — 2)]
P O0p(s)=1 jyéi
Z.’(ZO;;) (n - 1)'L<20k -_ 1, n — 1, ZV.,');
1 1
2 (1= 6ro) dlz, PO) = (1 = 2) 22 (1 = 6)(n — 1)!

-L(Zo,,, n— 1, z';),
1

(6.6)

(6.7)

It follows from (6.5) that for R-invariant t

o5 TGO = 11; 21: [ talt ~ t@edLind — 1, n—1, 2

+ btt(z)(l - Z,‘)(l - B)L(nb) n — 17 é’)} dy".
Denoting the 7th summand of (6.8) by Ri(t | 8), we note for later use that, if t
is actually invariant,
(69) R‘(t I 9) = Rl(t I 9) = R(t’ 0), 1= 1, MY (N
This follows from the invariance and a permutation of the variables of integra-
tion in the representation of Ri(t | 8) in (6.8). It further follows from this repre-
sentation that, for any fixed 0, the integrand of R;(t | 6) is, for each fixed z, at a
minimum with respect to ¢; if and only if ¢; is of the form defined, for p = 0,
l/n) e, — 1)/"’7 1, by

1, ) >

J
(6.10) #:5(z) = <0, az;pL(np — 14 < b(1 — 2:)(1 — p)
n—1 &) -Linp, n—1, %),

arbitrary, =
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with p equal to 8. We denote (41,(z), - - - , £,,(z)) by t,. With a proper determi-
nation of the arbitrary part, any decision function of this form (6.10) is invariant.
Hence, the representation of its risk in the form (6.8) is valid and R(t, ) for
each fixed 6 is minimized over the class of R-invariant decision functions by an
invariant decision function of the form (6.10).

Let

(6.11) #.(6) = inf R(t, ).

R-invariant t

From (6.8), (6.9), and (6.10) we obtain
#.(0) = Ri(t3]6)

(6.12) = fmin [az:0L(n8 — 1, n — 1, 2)),

b(1 — z)(1 — BL(n8, n — 1, Z)]d"
Since L(k, » — 1, #) is a symmetric function of 2, ---, 2,, we have for
any symmetric measurable set S
(6.13) fs Lk, n—1, &) d" ™" = 78S).
It follows that the integral with respect to 2, , - - - , 2, of a z-section of the inte-
grand of (6.12) is
azdll — 1" (S)] 4 b — a1 — 8) ¥ (S,

where 8, is the symmetric set
S., = [(e2, -+, 2a) |@zbL(n6 — 1, n — 1, %)

> bl — z2)1 — O)LmI, n — 1, &)

The developments from (6.4) onward set the stage for
TaEOREM 5. If ¢(8) and $.(8) are defined by (3.6) and (6.12), respectively, then
for any € > O there exists N (e) such that for any n = N (e) and any 0

#(8) — € < ¢a(6) = (D).

Proor. That ¢, < ¢ for all 8 follows from the fact that every simple decision
function is invariant.

For the nontrivial part of the proof we fix ¢ > 0. From the continuity of
¢(p) ((3.10) and (3.11)) we obtain a &(e) such that

(6.14) o(p) — e <0 fp<dé orp>1-—4.

Thus, it will be sufficient to show the existence of an N(e) which suffices for the
theorem when 0 < § < 8 < 1 — §. We will obtain this from the following measure
theoretic lemma, a slight generalization of which is proved in [5].
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Lemuma. If mo and m, are nondisjoint p-measures on a o-algebra of subsets x of
a set X, then for every ¢, & > O there exists N (e, 8) such that for any pair of posi-
tive integers r, swithr + s = N(e, 8) and 8 = r/(r +8) =1 — 3§,

|memi(S) — my " 'miT(8)| < e uniformly for all symmetric S in x .

From this lemma we obtain that if n — 1 = N(n, 8*) and 6* < nf/(n — 1)

<1 — s
1- V{'o_lvé'—"é(sn)] + v{“;x;:“‘”"(&,) >1—1

uniformly for all z . From this it follows that ¢.(8) > (1 — 7)¢(6) = ¢(8) —
76(8). Since the max,¢(p) < ¢ = ab/ (a + b), we see that in view of (6.14) the
choice N(e) = N(c'¢, 27'(¢)) will complete the proof of Theorem 5.

Theorem 5 can be combined with Theorem 3 or Theorem 4 to give a strength-
ened endorsement of t*. For large n, t* does about as well as could be done by
any R-invariant decision function even if 6 were known exactly.

7. Bayes’ and minimax solutions. Let t = (44(z), - - -, ta(2)) be any decision
function in the compound decision problem. For any 8 in @ we can write the risk
(2.9) in the form

R(t,0) = f % Z:: (a1 — ti(z)] d(z, 8) + b(1 — 0.)t(z) d(z, 0)} dv".

By a weight function we mean any function 3(8) = 0 defined on € and not
identically 0. For any weight function 8(8) and any decision function t we de-
fine the weighted risk of t relative to 3(0) as

B, = T 80 Bl o) = [ 12 (0 = @) o T ploles dls, )
+ @b 2 f0)1 — w) dz, 0)} &"

For fixed 8(6) this will be a minimum if and only if for almost every (»")z and
forevery i = 1, - -+, n, t(z) is of the form
>

1,
(1.1)  t(z]|8) =40, a§a<m>wi d(z, @)} < bgﬂw(l — w) d(z, @).

\arbitrary, =

Any decision function t of the form (7.1) is called a Bayes’ solution relative to
the weight function 3(8).

For the remainder of this section we restrict our attention to symmetric
B(0), that is, such that

(7.2) (Z) B(8) = B« forall @ with 2,0, =k k=0,1---,n
1

For symmetric 8 we obtain the representation (see (6.8) to (6.11))
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2 k
a 2 Ble)w; d(z, ®) = az; 28 -Lk—1, n—1, %),
ry —- o n !

b3 Bo)(1 ~ 09 dlz, ) = b1 = 2) Ea Bl = k/mL(k, n—1, Z).

Several particular cases of (7.2) hold special interest for us. If for some integer
ko with 0 < k < n, (7.2) takes the form

Bro = 1, B =10 k=20,-:-k—1%k+1,---,mn

then the corresponding Bayes’ solution (7.1) is a decision function of the form
(6.10).
If for some constant p with 0 < p =< 1, expression (7.2) takes the form

B = <Z> Pl — o)™

then the corresponding Bayes’ solution (7.1) is a decision function of the form
(8.5) provided the Bayes’ solution is required to be simple on the arbitrary part
of its definition.

Referring back to Section 3, we have by the previous paragraph that each of
the simple decision functions t = ¢, for 0 < p < 1, defined by (3.5), is a Bayes’
solution for the compound decision problem. It can be shown (we omit the
simple proof) that there always exists a value 0 < p’ < 1 and a determination
of t,» for which the coefficient of p in (3.3) vanishes. Letting r be the constant
value of B(¢, , p) it follows that R(f,- , 8) = r for every 0 in Q.

Since #,» has constant risk and is a Bayes’ solution relative to a weight func-
tion which is positive for every 0 in Q, it follows that ¢, is the admissible minimax
decision function, unique in the sense of risk. That is

sup R(t, 8) = minimum for t = ¢,
ing

and if t is any other decision function such that sup R(t, 8) = r, then R(t, 8) = r.

8. Admissibility. Since the minimax decison function ¢, is simple and has
constant risk » independent of n, it follows that

r = R(t,r, 0) = inf R(t, 0) = ¢(6) for all0in Q,
t

and hence r = ¢(p’) = max, ¢(p).

If po and p; are nondisjoint, ¢(0) = ¢(1) = 0 < r and we conclude from
Theorem 4 that, for any 0 < ¢ < r, the minimax decision function is e-inad-
missible (See [6] for definitions) for all sufficiently large =, since decision func-
tions of the type t* are e-better.

The present paper has failed to exhibit a t* which is admissible (or even to
show the existence of such). This deficiency is remedied, at least asymptotically,
by the fact that, for any ¢ > 0 Theorems 4 and 5 together imply that any de-
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cision function of the type t* is e-uniformly-best (relative to the class of R-
invariant decision functions) for all sufficiently large =.
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