THE CRAMER-SMIRNOV TEST IN THE PARAMETRIC CASE
D. A. DARLING

Unaversity of Michigan and Columbia University

Summary. The “goodness of fit”’ problem, consisting of comparing the empir-
ical and hypothetical cumulative distribution functions (cdf’s), is treated here
for the case when an auxiliary parameter is to be estimated. This extends the
Cramér-Smirnov and von Mises test to the parametric case, a suggestion of
Cramér [1], see also [2]. The characteristic function of the limiting distribution
of the test function is found by consideration of a Guassian stochastic process.

1. Introduction; position of the problem. Let X, X,, - .-, X, be independent
observations (random variables) coming from a population whose absolutely
continuous cdf is G(z). Let I be a nondegenerate interval on the real axis and
suppose, for each £ contained in the interior of I, that F(z; £) is a cdf. In this
paper we treat the problem of testing the hypothesis H,

(1.1) H : G&) = F(z; £) for some unspecified ¢ e I.

About the only test of H at present available seems to be the usual x* test,
discussed recently by Cochran [3].
For a somewhat different hypothesis H, ,

(1.2) Hy, : Gl) = F(z) = F(z; &) for a specified & € I,

the following test of Cramér [2], Smirnov [4], and von Mises [5] is available.
Let F.(z) be the empirical cdf of the data; that is, F.(z) = k/n if k of the X;,

with¢ = 1,2, --- , n, are less than z, for — o < z < «. The test function
is then
(1.3) Wa=mn _[ [Fu(z) — F(z; 8] dF (z; %),

and H, is rejected if W3 is suitably large. The limiting distribution of W2 ,
if H, is true, was given by Smirnov; it has been tabulated recently [6].

This test of Hy, has certain attractive properties not possessed by the usual
x* test. It does not require a subjective grouping of the data into classes, it is
distribution free for all n (if H, is true), and it is consistent (i.e., has limiting
power 1). Appraisals of the x* test and this test are given by Cochran [3] and
Birnbaum [7]. '

In an effort to modify the W7 test to treat the hypothesis H of (1.1), we shall
consider, following a suggestion of Cramér, the test function

(14 ¢3 = n [ @) — Pl 01 aF(a; ),
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2 D. A. DARLING

where 8, is a suitable estimator for the unknown parameter ¢ in F(z; £), and is
a function of X;, X;, - -+, X, . The hypothesis H is to be rejected if C3 is suffi-
ciently large. If X1, X5, -+, X» is a rearrangement of the sample Xi, X,
-+, Xns0that X1 < X; < --- < X, for computational purposes C% can be
expressed more simply as

| . roay 2 —1T
(1.5) Cn = m"'E[F(XJ)on)_ ——Q’I—l—].

The main analytical task is to calculate the distribution of Ca when H is true;
it is accomplished in the present paper. It turns out that matters depend cru-
cially on the estimator 8, chosen. There are two essentially distinct cases.

If it happens that, among other conditions stated in Theorem 2.1, 4, is an
estimator such that nE{(6, — 6)’} — 0, where 0 is the true value of £, that is,
G(z) = F(z; 0), then the limiting distribution of C% is the same as the limit-
ing distribution of W% given by (1.3). This is known-and tabulated.

In the more general case when 6 does not admit this so-called superefficient
estimate but /n(6, — 6) has a limiting Gaussian distribution with mean 0
and variance o* > 0, then the limiting distributions of C% and W? are not the

1
same; the limiting distribution of C7% is that of f Y*(?) dt, where Y (f) is a cer-
0

tain Gaussian stochastic process. The process has a specially simple structure if
0 admits a minimum variance (or efficient) estimator 6, , orif the maximum likeli-
hood estimator is asymptotically efficient in the sense of Cramér [1].

In this latter case, we determine the ch.fn. of the limiting distribution of
C? explicitly. We give several illustrations, but unfortunately even in simple,
important cases (such as, a normal distribution with an unknown mean) the
resulting ch.fn. appears very difficult to invert.

Unlike the W2 test, the C7 test is not distribution free. In general it depends
on the unknown true value of £, though in important special cases (including
the case when { is a scale or location parameter) the asymptotic test depends
only on the structure of the family F(x; £) and not upon the particular value
of ¢ obtaining; that is, the test is parameter-free, so to speak.

2. The superefficient case. Suppose that H as given by (1.1) is true, and let
the true unknown value of the parameter ¢ be 6, with 6 an interior point of I.
Let the density corresponding to F(z; £) be f(x; £). Denote as before

n [ (Faa) — P 0) P 0) = WA

THEOREM 2.1. Assume that the estimator 8, and the distribution F(x; £) have the
following properties:

1) nE{(6, — 6)’} > 0,n — o;

2) For ¢, £ €1, F(x; £) satisfies a Lipschitz condition

| Flz;8) — F(z; &) | < A@@) £ — ¢ |,
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where Pr{A*(X1) > Ao} = 0 for some Ay < =, the probability according to
F(z; 6).

Then C% = W2 + 8., where 8, — 0 in probability.

Proor. From (1.5)

et =L > (rx!ia - J;:j>2
" 12n j=0 7o n

-+ B ({reio — 12 4+ o0 - rets o)

=W +2 Z{F(X;. : 6) —-7_;—%} {F(X;; 6.) — F(X];0))

+ 2 (F(Xj; 6,) — F(X;;0)}
= W2 + 25, + 8.
Then 8} < (W2 — 1/12n)5, , and

8 = > {F(X;; ba) — F(X;; 0))° < n(bs — 6)° max; A%(X)).

Thus E(5:) — 0 and E(3}) £ E{(W% — 1/120)’}*E(53)"* — 0, and the theorem
follows. A trivial consequence of the theorem is

CoROLLARY 2.1. Under the conditions 1) and 2) of Theorem 1.1, the limiting
distribution of C2 is the same as that of the von Mises statistic WS .

The limiting distribution of W% has been tabulated [6]; the problem in this
case is solved. Two simple examples in which the estimate 8, is unbiased follow.

a.) It is easily verified that Var(f,) = 6°/n(n + 2), and that condition 2)
of Theorem 1.1 is satisfied, when

. n+1 flx; §) = .
0, = max {X;, X, -+, Xa}. 0, otherwise;

n

b.) Likewise, Var(d,) = k/2(n + 1)(n + 2), and 2) is satisfied by f(z; £),
when

1) E_%<”<E+%7

I = —o < ©};
el <t f(x;$)={0

b, = 3(U + V).

Here U is the kth largest X; and V is the kth smallest X;, fori = 1,2, --- n,
and % is independent of n (e.g., k = 1 gives 8, the midrange).

) otherwise;

3. The regular estimation case. In general, the rather rapid decrease of
Var(6,) to zero as expressed by condition 1) of Theorem 1.1 will not occur. In
the case of regular estimation of Cramér ([1] p. 477), we will have Var(4,) = A/n
for some positive A—the Cramér-Rao inequality. But it will generally happen
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that »"*7°(4, — 6) will converge in probability to zero for § > 0. To cover this
situation, we have the following
LemMma 3.1. Assume that f(x; £) and 8, are such that

1) nB{(b — 6} — 0
2) ’ 7re Y ] < o),

3) ‘ af(rv, £) ' (@),

for almost all x, where go and g, are integrable from — o to + «. The functions
go and g, and the exceptional set do not depend on &.
Then,

31) C: =n f_ ) {F,,(x) —F@ — (- ) 2 F(x, o)} £(a; 0) do + 5.,

where 6, — 0 in probability.
For almost all z we have

F(z; 8,) = F(w;6) + (b — 0) o F(m 6) + 36, — O’qegole), @0l <1;

fx;6,) = f(z;0) + (6, — O)qrga(z), @] < L.

Putting these expansions in expression (2.1), we obtain the lemma after some
calculations.

Conditions 2) and 3) in the above lemma could be replaced by the condition,
similar to that of Theorem 2.1,

‘ FX;t)  oF(X;¢)
9¢ ot

Thus it is necessary to study only the limiting form (if it exists) of the distribu-
tion of

<Al —-¢|.

R.=n f {Fn(m) = F(z;0) = (60 = 0) 5 F(x 0)} f(x;6) da.
A transformation which is basic in the work to follow,
(3.2) u = F(z; 6),

defines implicitly « as a function of w. Thus x = z(u; 6) except possibly for an
enumerable set of u values at which z can be defined arbitrarily, except to render
it monotone nondecreasing. Next we define the function g(u) as

(3.3) g(u) = é'%F(ac;(i), 0<u=1,
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and note that g(u) depends in general on 8. Finally, we express the empirical
cdf as a function of u. If we introduce the function y,(v) defined as

1, v <t

0, v =t

¥iv) = {

then we have, with probability one,
1< 1 ¢
Fo(@) = = 2 9:(X;) = = 2_ yu(F(X; ;0)),
n j=1 n j=1

where u is given by (3.2.). On writing

(3.4 2uw) = V(& S w0 - ),

C% can be written, from (3.1), as
.1
ch = / (Za(u) — Tog(w))* du + 6,
0

where 8, — 0 in probability, and g(u) is given by (3.3). Finally by defining the
stochastic process Y,(u) as

(3.6) Yo.(u) = Zn(u) — Tag(u)
where Z,(u) and T, are given by (3.4) and (3.5), and g(u) by (3.3), we have

1
= f Yi(u) du + 6,
0

where 8, — 0 in probability.

It follows that the limiting form of the stochastic process Y,(u) is of central
importance, and we next prove

LeMma 3.2. Assume, in addition to conditions 1), 2), 3) of Lemma 3.1, that

4) nE(b, — 6) — 0;

5) T, = V/n(b, — 0) is a sum of independent identically distributed random
variables having a limiting Gaussian distribution with variance o* > 0; and

6) the conditional expectation nuE (b, — 0| F(X1; 6) < u) converges to a func-
tion h(w) with0 < u < 1 and h(0) = k(1) = 0.

Then the process Y ,(u) converges in distribution to a Gaussian process Y (u)
with mean 0 and covariance

an p(u, v) = E(Y(w)Y ()
) = min (u,v) — w — gWh(@) — gW)h(w) + ’g(u)g(@).

The expression “Y,(u) converges to Y(u) in distribution” means that for
every finite set u;, uz, -+, ux the joint cdf of V,.(ui), Ya(us), -+ , Yalux)
converges to the joint cdf of Y (u1), Y (us), - -+, Y(us). The proof of the lemma
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is quite straightforward. The process Z,(u) defined by (3.4) is known to con-
verge in distribution to a Gaussian process with mean 0 and covariance k(u, v) =
E(Z,.(u)Z,(v)) given by

(3.8) k(u, v) = min (u, v) — uv,

with k(u, v) being independent of » (see, for example, [6]). By 5) T'. has a limit-
ing Gaussian distribution with mean 0 and variance o°. It follows from the multi-
dimensional central limit theorem that the linear combination Y,(u) = Z.(u) —
T.g(u) converges in distribution to a Gaussian process whose mean is 0. Thus
will be sufficient to verify that the limiting covariance p,(u, v) = E(Y.(w)Y,())
converges to p(u, v) given by (3.7).

Denoting by h,(u) the function

3.9 ho(u) = E(Z,(w)T,)
and using (3.4) and (3.5), we have, by condition 5),
ha(u) = VRE{[(1/7) 2 u(F(X; 5 0)) — wllvVn(8 — 0)]}
= > EWu(F(X;; 0))(8n — 6)] — nuE(8, — 06)
nE{(6, — O)Yu(F(X1;6))} — nuB(6. — 0)
= nuE{6, — 0| F(X1;0) < u} — nuE(b, — 0).

Consequently by 4) and 6), h.(u) — h(x) for 0 < u = 1. The covariance p,(u, v)
is

(3.10)

pa(u, v) = E{[Za(u) — Tag(w)|[(Zn(v) — Tag®)]}
= k(u,v) — ha(u)gl) — ha(@)g(u) + org(w)g®),

where o2 = Var(T,) — o and k(u, v) is given by (3.8). Thus we obtain p.(u, v) —
p(u, v) for p(u, v) as in (3.7), and the lemma is established.
It might be concluded that the limiting distribution of C? is the distribution

(3.11)

1
of C* = f Y*(u) du where Y (u) is a Gaussian process with mean 0 whose co-
0

variance is given by (3.7), following Doob’s [8] heuristic approach. But we shall
prove this fact in the next section only when the estimator 8, is further specialized.
Two further properties of the function h,(u) conclude this section.
LemmMa 3.3. For the function h,(u) as defined by (3.9),

1) Ihn(u)| = o'n'\/u(l - u), 1 0su= 1;
2) hn(u) = nE{f, — 0| F(X1;0) = u} — nE(b. — 0).

The first relation follows immediately by Schwarz’ inequality from (3.9) by
using (3.8) with » = v and Var(T,) = o> . For the second relation we use (3.10)
to give

Bl + 8) — ha(u) = ndE{(8, — 0) |[u < F(X1;6) < u+ 8]} — néE{b, — 6}.
By letting § — 0, 2) follows.
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For n — o, h,(u) converges to h(u) and o> converges to o*. Thus we have
[ h(w) | £ oVu(l — w). However, we cannot conclude directly that lim A (u)
exists.

4. Case of an efficient estimator. As yet, we have given no special attention
to the choice of the estimator 4, . It might be thought that, paralleling the prin-
ciple of minimum x*, we should choose 6, so as to make C2 , as given by (2.1), a
minimum. However, as is often the case with minimum x?, this does not lead to
usable results. However, precisely as in the x* case, the maximum likelihood
principle does lead to a certain ideal properties for C% , at least asymptotically.

In this section, we assume that Cramér’s conditions ([1], pp. 477-489) for a
regular, unbiased efficient (or minimum variance) estimate are satisfied. Follow-
ing Cramér, we simply term the estimate efficient. Then all the conditions 1)
through 6) of Lemma 3.2 are satisfied, as noted below, with the possible excep-
tion of condition 2), which we shall further presume satisfied. Condition 2) is
also postulated by Cramér for the maximum likelihood case which we consider
in the next section. The efficient estimator is unbiased so that condition 4) is
satisfied, and implies besides that the likelihood function

L =T50x;;9

has the property that if £ = 8, is a root of (9/9%) log L = 0, then, defining

wn o =up{[Zresxio]} = ([[[Zroeseo] o)

we have
n

(V] _ d e =M
splo8 L = 2 5 log (X538 = 55 (6 — 0.

By putting ¢ = 0, this yields

42) B = 0) = 3 5108 f(X;50) =

j=

Vurp,
g

It then follows that the variance of T', is o°, independent of n, given by (4.1),

and that conditions 5) and 6) are satisfied.

For condition 7) of Lemma 3.2, we multiply through the last equality by
o and take conditional expectations of both sides under the condition that
F(X;; 60 = u. Then on using 2) of Lemma 3.3, and the fact that
E[(0/36) log f(X;; 6)] = 0, we have

o 3 B{ 2 10g 10,300 | POX3 00 = o)

Jj=1

hn(w)

Il

= UZE{;% log f(X:;0) | F(Xy;6) = u}

=29 :
=0 6010gf(x)0)y



8 D. A. DARLING

using transformation (3.2). Thus h:.(u) is independent of n. We denote it by
K (u), given by

(4.3) W) = aza%log (3 6).

Because of this simple formula for h(u), making it proportional to g(u) as we
see immediately, p(u, v) simplifies and renders the process Y (u) of Lemma 3.2
manageable.

From the definition of g(u) in (3.3) we have immediately ¢g(0) = ¢g(1) = 0
and

dz _ 1 @
du  f(x;0) 00
Since A(0) = 0 by 1) of Lemma 3.3, by integrating we obtain h(u) = o’g(u).
Thus it follows that we can define a function ¢(u),

7) = =z 0) fw30) = 2 log flz; 0) = S W(w),

o(u) = -’E(;u—)

(4.4) = og(u),

where h'(u) is given by (4.3) and g(u) by (3.3), ¢ being given by (4.1) and z by
(3.2).

Putting these values for h(u) and g(u) in (3.11), we obtain

LeMMA 4.1. In the case of an efficient estimator, the process Y ,(u) given by (3.6)
has mean 0 and covariance

(4.5) p(u, v) = k(u, v) — o(We(v),
independent of n, where k(u, v) is given by (3.8) and o(u) by (4.4). The function
o(u) has the properties
1
a) |ow)| = Vad—w, b fo o) du = 1.

Condition a) follows from 1) of Lemma 3.3. To prove b), from (4.4) and
(4.3) we have

fol ' (u) du = (1:2 [ B u) du = o ]01 [3% log f(x; (9):|2 du

= /;: [% longx; 0)]2f(x;0) dz =1,

when we use (4.1).
Thus we have shown that, when an efficient estimator §, exists, the limiting
1
distribution of C? is the same as the limiting distribution of f Y2 (u) du, where
0

Y.(u) has mean 0 and covariance p(s, £) given by (4.5), and approaches a Gaus-
sian process Y (u) in distribution. We need to show that this limiting distribution

1
is the same as the distribution of C* = f Y*(u) du where Y (u) is a Gaussian
0
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process with mean 0 and covariance p(s, ¢). To state the theorem formally,
TureorREM 4.1. In the case of an efficient estimator,

1
lim Pr {C% < z} = Pr{[ Y(u) du < x}

n—e vo

where Y (u) is a Gaussian process with mean 0 and covariance p(u, v) given by
(4.5).
Actually we are going to suppose that o(u) satisfies the
AUXILIARY ASSUMPTION. ¢” (u) exists almost everywhere for 0 < » < 1 and
rl

” 1
(4.6) jo " (w) | u(l — u) log log g du < o,
We first show the ¥,(u) process can be expressed in terms of Z,(u) and that we
have the representation

4.7) Yau) = Zu(w) + o(u) ID 0200

From (3.6) and (4.2) we have merely to show

n

1
” _9 d L.
| e 02.0) at = — 7= 3 log f(X;36).
By using (3.4) for Z.(¢), integrating by parts, and using (4.3) to obtain ¢'(f) =
0(8/90) log f(x; 6), where ¢ = F(x; ), the result follows.
Now the process Z(u), which is the limit in distribution of Z.(u) given by
(3.4), is Gaussian with mean 0 and, by (3.8), covariance k(s, t) = min (s, {) — st.
.1
It has been shown [6] that the random variable / " (W)Z(u) du exists (and is
v0
Gaussian with mean 0) when the auxiliary assumption (4.6) is satisfied. Then
the process
;1
(4.8) Y(u) = Z(u) + o(w) | o"(OZ(2) dt
is Gaussian with mean 0 and covariance

E(Y(wW)Y (@) = k(y, v) + o(u) ]0 1 o (Ok(v, t) dt + ¢(v) ]0 1 ¢ k(Y ) dt

T ee) | [ 00 kG 9 dt .

.1
Since | ¢”(O)k(v, t) dt = —¢(v), the covariance becomes
0

o

E(Y(W)Y(®) = k(u, v) — 20(u)e(v) + ¢(w)e(v) fo ¢ (De(t) dt

Il

It

a,0) = 200)60) + o)e®) | "0 d

= k(u, v) — o(u)e(v) = p(u, v),
where we have used b) of Lemma 4.1.
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Hence (4.8) is a representation of the process Y (u) of Theorem 4.1 in terms
of the process Z(u). Then since f l Y2 (u) du is a functional of Z,(u) continuous
in the uniform topology by (4.7),0it follows from a theorem of Donsker [9] that
its limiting distribution is the same as the distribution of fo 1 Y*(u) du for the

process (4.8) or the process Y (u) of the theorem, and the proof is complete.
By virtue of Theorem 4.1 we can now concentrate on the process Y (u) and

W1
attempt to find the distribution of C? = j V() du.
0

b. Case of a maximum likelihood estimator. When an efficient estimator for
6, for finite n, does not exist, it will generally happen that a maximum likeli-
hood estimator for 6 will exist and be asymptotically efficient in the sense of
Cramér. In this case, the results of Section 4 will still be valid.

We shall assume that the conditions of Cramér ([1] pp. 500-501) are satisfied.
These conditions imply that conditions 1)-6) of Lemmas 3.1 and 3.2 are satis-
fied with the exception of condition 4). We shall suppose this condition to be
satisfied also, calling it a condition of “weak-biasedness” on 6, . In some cases,
as with the efficient estimators, 6, is actually unbiased and 4) is trivially satisfied.

The following analysis parallels exactly the development in the preceding
section. The formulas are all the same except for additional terms which ap-
proach 0 in the mean and with probability one. We merely indicate the develop-
ment leading to theorem 5.1.

Defining ¢” as in (4.1), we can write

églogL E—“Ing(XJ’E) = "'(0 5)(1 + fn):
Where en — 0 in the mean and with probability one. Then (4.2) becomes, with
& — 0 strongly,

%0 —0) = ; = 10g f(X;50)(1 + €v).
Consequently, hn(u) — K'(u) and o> = Var(v/n(d, — 6)) — o for n — o,
where h,,(u) is given by 2) of Lemma 3.3 and &’ (u) by (4.3). Accordingly, p.(u, v)
given by (3.11) converges to p(u, v) defined by (4.5). Thus we can generalize
Theorem 4.1 to

THEOREM 5.1. If 8, is a weakly-biased mazximum likelihood estimator satisfying
Cramér’s conditions, and if ¢(u) satisfies (4.6), then

lim Pr {C%, < z} = Pr{fo1 Y(u) du < x}

where Y (u) is a Gaussian process with mean 0 and covariance p(s, t) given by
(4.5).

1
The theorem says that C% converges in distribution to C* = / Y*(w) du.
0
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6. The limiting distribution of C% . In the preceding sections we have reduced
the problem of finding the limiting distribution of C3 under general conditions

1
to that of finding the distribution of f Y?*(u) duj where Y (u) is a Gaussian proc-
0
ess with mean 0 and covariance p(s, t) given by

(6°1) p(u, 1)) = k(u’ 1)) - ¢(u)¢(1)), k(u, v) = min(u, 1)) - uy;

o(u) = v%F(x;o), u = F(z;0);

o= [[: <% log f(z; t9)>2 f(z; 0) dav]_l.

The function ¢(u) can also be determined from

(6.2)

¢'(u) = a:%log f(z;0), u = F(z;0).

1
In determining the distribution of f Y*(u) du we shall use a basic theorem
0

due essentially to Kac-Siegert [10]. It states that the distribution of this random
variable is the same as the distribution of a sum of weighted »*,

1 0 2
C”=fo ) du = 3 &

n=1 An ’
where G, G2, - - - are independent normally distributed random variables with
mean 0 and variance 1, and Ay, Az, - - - are the eigenvalues of the kernel p(s, ).

Proof of this result for nonstationary processes follows almost immediately from
[10]; it may be found, for example, in Fortet’s paper [11]. We have for the ch.fn.

E{exp [u fo ' Yo) du]} - ,I:.I (1 - %t)—m.

This expression is merely (D(2it))™"?, where D(A) is the Fredholm determinant
associated with the kernel p(u, v) in (6.1). To state matters formally, we have
TraEOREM 6.1. Under the conditions of Theorem 5.1,

lim E{exp (#C%} = [D(2:t)]™*"
where D(\) is the Fredholm determinant of the integral equation

1
1@ = [ ole, viw) dy

in which p(x, y) s given by (6.1).

Thus, for ¢(u) given, it is necessary only to determine D(A) and invert the
ch.fn. (D(2:it))™ in order to obtain the limiting distribution of C2 . It turns out
to be possible to get a fairly explicit formula for D(\), but the resulting ch.fn.’s
seem very difficult to invert.

We first prove a result more general than needed but which may be of inde-
pendent interest.
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THEOREM 6.2. Let ki(z, y) be a symmetric, bounded positive definite kernel over
the unit square 0 £ x, y = 1 whose Fredholm determinant di(\) has simple zeroes
0 <A <N < ---, and let the corresponding eigenfunctions be fi(z), f(z), -

Let

o = o(f) = f f{@)ex) de, ex(z) € La(0, 1).

1
Put ¢(g) = / g(x)p1(z) dx. Then the Fredholm determinant Di(\) for the kernel
0

pi(z, y) = ki(z, y) — er(x)er(y)

s given by

Di(A\) = di(n) (1 +A ,,Z:l 1= x/n)

Proor. The integral equation
1
(63) o@) = A [ alz, 1) = e@da@)] o) dy

can be written

1
(64) o@) = e@elg) + 1 [ lale, v) o(y) dy,
We have the familiar series ([12] p. 228)

(6.5) glx) = —xclg) Z fi(x), A =

)\/ Nj
This is not a solution to (6.3), since g appears on both sides. But we may mul-
tiply both sides by ¢1(z) and integrate; termwise integration of the series is easily
justified. We obtain

clg) = —cl@A2a;/(1 — M)
Hence either g is such that c(g) vanishes, or else A must be a root of the function
P(\) = 1422 ai/(1 — M.

If A £ \;, then c(g) cannot be zero, since otherwise (6.4) would be a homogeneous
equation with a nontrivial solution existing for A not an eigenvalue of the kernel.
Consequently, the only possible values of A for which (6.3) has a solution are
either the roots of P(\) or else A = \;. That is, A must be a root of Di(\) =
di(M)P(N).

Now P(\) is analytic save for possible simple poles at A = A;. Hence Di(\)
is an entire function of A with D;(0) = 1, and is of genus zero. We note that

;1 .1
DI/ = /0 ki(s, s) ds < oo, dak = /0 o) dt < oo,
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Consequently, if for any root A = A* of Di(\), (6.3) has a solution g*(z) with
j g*¥(z) dz = 1, then D;(\) is indeed the Fredholm determinant of the kernel

p, y) = k(z, y) — ei1(@)er(y) in (6.3).
Let now A = \* be a root of Di(\) = di(A\)P(\). We have the following two
cases

(1) )\*#)\j; (2) >\*=)\j, a,-=0.

In case (2), if A* = \; and a; # 0, then D;(A*) # 0, since the roots of d;(\) are
simple.

In case (1), A* is a root of P(\); we show immediately that A\* is real and sim-
ple. If we substitute the function

% _ a:f:(x)
(6.6) g*(x) = T— /N /"/Z - >\*/>\:)2

in (6.3), we verify easily that it satisfies the equation. Since the kernel in (6.3)
is symmetric, A\* is real. Then, since

2
P’()\)=Z<'1_a—])\/)\>, )\?5)\jifaj?éo,

1
is positive for real A\, A* is simple; the case when | ei(z) dz = 0 is disposed of
0

easily, of course. Thus, for any root under case (1) we have the solution g*(x)
given by (6.6).

In case (2) there are two subcases, P(\*) £ 0 and P(\*) = 0. If P(\*) = 0,
then A* = \; is a simple zero of Di()\); in this case f;(z) is readily seen to satisfy
(6.3), and f;(x) is orthogonal to ¢:1(x). If P(\*) = 0, then D;(\) has a double root
at A = \*, and besides the solution f;(x) we have the solution g*(z) of (6.6),
which is orthogonal to f;(z). Accordingly, to each root of D;(\) we obtain solu-
tions to (6.3) of the proper multiplicity. Theorem 6.2 is thus proved.

There is only a slight complication to prove an analogous theorem in the case
when d;(\) has repeated roots.

By plotting the function P(\) for real ), it is easy to prove that D;(\) has at
most one negative zero \¢ ; the condition for its existence is that D s Ajai > 1,
or that the series diverges. If the positive zerosare0 < Af < Ay < -- -, repeated
according to their multiplicity, we verify easily that \] = \;forj = 1,2, ---.
This remark will be useful in the sequel.

In Theorem 6.2, in order to find D;(A\) = di(A\)P()\), it is necessary to know the
\; and the Fourier coefficients a; of ¢1(x). The following theorem gives an evalua-
tion of Di(A) through the solution of a nonhomogeneous integral equation with-
out specifically bringing these quantities into evidence.

TuEOREM 6.3 Let ki(x, y) and ¢1(x) be asin Theorem 5.2. Regarding s as a param-
eter only, let u(t, s) be the solution of

(67) ulty 8) = s + N | ke, ule, o) d.
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Then the Fredholm determinant Di(\) for the kernel ki(zx, y) — o1(x)er(y) s
1
D@)=&®(L+Afu@0&)
0

The theorem follows quite simply from the series solution ([12], p. 228), using
the previous notation,

ut, ) = 33 120 s

1
so that [ u(t, t)ydt = D aj/(1 — A/A;). The result follows by using Theorem
0

6.2.
For the analysis of the present problem, we have, from (6.1), k(z, y) =
(z, ¥) — zy. In this case it is well known that

A= 1l'2j2, fJ(x) = \/-2. sin ij’ d(X) (sm '\/—)/'\/_

Using Theorem 6.2 we have, concerning the limiting ch.fn of C% ,
COROLLARY 6.4 The function D(\) of Theorem 6.1 is

D& = Sm\/\"/_ (1 + )‘,Z-; 1 - >\/ 21")

1
where a; = V2 f o(z) sin wjz dz.
0

It turns out to be possible to replace this expression by a quadrature, and we

have
TaEOREM 6.5 The function D(\) of Theorem 6.1 is

68) DO = Si“\/‘iﬁ —2 [ ‘ [ " o(8)' (1) cos VAL — &) cos V/X s ds di.

To prove the theorem we first note that
1
wkar = \V/2 f ¢'(t) cos kxt dt.
0

Hence, supposing initially that A = 1r2k2
PO =1+23 ——m V%2

=142 f f ¢ (1)’ (s )Z 008 B’ C08 s ’f’; c_os k7S gt ds

14+ L ‘l o) (s) {1 — sin\/\_/i L(t, s)} dt ds

B sir?/f\/x fo fo ¢’ ()¢’ (s)L(¢, ) dt ds,
L, s) = {cos VA — ) CQS\/XS, 12 s
y8) = cOS'\/X(l—S)COS'\/Xt, t<s.
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Hence, since D) = (1/4/X) sin A/X P(A), we obtain the conclusion to the
theorem, L(¢, s) being symmetric.

By using Theorem 6.3 we can obtain an alternative expression for D(A) in
terms of the solution to a differential equation.

TaEOREM 6.6 Regarding N and h as parameters, let v = v(t, h) be the solution to

(6.9) v” + N = he” (1), v(0, h) = v(1,h) = 0.
Then the function D(\) of Theorem 6.1 s
(6.10) DO) = 1/v/D sin VR (14 [ o, 0(0) at).

In fact, the integral equation (6.7) is equivalent to the differential equation,
with s parametric,

v 4+ W = o(8)e” (1),

which vanishes at £ = 0 and ¢ = 1. Hence, using Theorem 6.3 we obtain (6.10)
immediately.

The result of Theorem 6.5 follows directly from Theorem 6.6, for in solving
(6.9) we determine the Green’s function G(¢, t) for the differential expression
v” + v over the interval (0, 1). This is

sin /¢ sin VAl — )

t .
6 1) = /X sin v/ ’ > &
’ sin A/At sin V(1 — &) p
4/A sin v/ ’ <&
1
Hencev = h f G(&, t)e" (£) d&, so that (6.10) will give (6.8) after integration by
0

parts.

The above results give various methods of obtaining D(A\) and the ch.fn. of
C?, which is [D(2i£)] ™. The distribution can be obtained by the inversion for-
mula

_ 1 % —sterpyiom-l2
u() = o L D@ ™ dt,
1 & ot Aok e"‘III/2 dy
Ul) =1-—= -1 —_——
®) 13 (-1 sz_lv_y2p(y)

where’ U(z) = f u(y) dy is the cdf of 021, and 0 < A; < A2 < -+ are the (sim-

0
ple) zeros of D(A).

7. Properties of the C? test. A matter of central interest is whether the C%
test has certain distribution-free properties. For example, it is important to
know if it is parameter-free, that is, if the limiting distribution of C% does not

2 The factor (—1)*¥1 is missing throughout Smirnov’s [14] analysis.
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depend on the parameter 6 in F(z; §). Clearly the test will be parameter-free if
and only if ¢(u) given by (6.2) does not depend on 6; only in this case do we
really have a usable test. This turns out to be the case when 6 is a location or
scale parameter.

TuroreM 7.1 If R(z) is a cdf and if F(x; 6) = R(x — 6) or F(x; ) = R(z/6),
for § > 0, then o(u) is independent of 0 and the C?% test is parameter-free.

To prove the theorem, we need only compute ¢(u) as given by (6.2). Let r(z)
be the density corresponding to R(x). Then, when F(x; §) = R(x — 6), easy
calculation shows

7.1 o) = =([ @) )

When F(z; §) = R(z/6),
—1/2

72 elw) = —( [ #r@/man ax - 1) R (R (),

where R™'(u) is the inverse of R(z).
Another case of interest is F(z; 8) = [R(z)]’ for 6 > 0. Here easy computa-
tion shows

(7.3) o(u) = ulog u.
Likewise when F(z; 0) = 1 — [1 — R(2)]’ for 6 > 0, we get
e(u) = —(1 — u) log (1 — u).

In these latter two cases, ¢(u) does not even depend on R, so the test is distribu-
tion-free over this class of cdf’s.
In general, however, ¢(u) does depend on 8. Consider, for example,

F(z; 0) = 6R’(x) + (1 — 6)R(z), 0<6=1.
For this, simple calculation gives

o(u) = (tang—l b_ 1>—1/2 <u _-ite+ \QW)

Although not depending on R, this does depend on 6. At 6§ = 0 we get o(u) =
V3 u(l — w).

In Section 6 we have given various methods of obtaining the Fredholm de-
terminant D()) for the kernel p(u, v) = min (4, v) — uw — o(u)e(v). The eigen-
values, Ay for k = 1,2, ... | of this determinant are positive since p is a corre-
lation function; that is, the case of one negative root Ao of D(\) discussed at the
end of the proof of Theorem 6.2 does not occur. For the limiting semi-invariants
of C% we then have [6]

(74) K; =27 — 1)t 21/A, i=12 -,
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1
orK; = 2"7'(j — 1)!]0 pi(u, u) du, where p;(u, v) is the jth iterate of the kernel

p(u, v). Thus the mean K; and variance K; of C* are, for example,

1

(75) p=K = jo p(u, u) du = jo [s(1 — 5) — ¢*(s)] ds = 3§ — /01 ¢’(w) du,

& =K, =2 jljl [min (u, v) — uww — e(w)e®)]* du dv
(7.6) B ,
=15 — 8]0 o)1 — t)j0 sp(s) ds dt + 2(u — 34~

These expressions may be compared with the corresponding expressions for
the case when there is no parameter to be estimated, that is, the W2 test of the
hypothesis (1.2). From the remark at the end of Theorem 6.2 we conclude that
M = 7k, so that from (7.4) it follows that all the semi-invariants (in particular
the2 mean and variance) for C* are less than the corresponding semi-invariants for
w*.

Expressing now W* and C” as a weighted sum of x* variables, we have

W* = 2.6G/xf,  C' = G,

where G1, G, - - - are independent Gaussian random variables with mean 0 and
variance 1. All the weights 1/\; in C* are less than the corresponding weights
1/#%" in W?; this is the analogue to the reduction of the number of “degrees of
freedom” in the usual x* test. It is accounted for by the fact that there is addi-
tional freedom in fitting the empirical and theoretical cdf’s because of the esti-

mated parameter 0.
In particular, by (7.5) the mean of C” is less than the mean for W? which is

1

1€, by the factor / ¢’(w) du. This dimensionless quantity gives an idea of the
20

“diameter” of the family F(x; 6) with respect to 6.

8. Illustrative examples.
A. Location parameter. Let F(z; ) be of the form

F(z;0) = R(x — 60), fx;6) = r(z — 0),

for a cdf R(x) whose density is r(z) = R’(x). Then denoting

o= ( [ : [*(z) /r(z)] dx>—”2

we have by (7.1), o(u) = —or(R()). Since

e(R) = —or(y), ' REY) = —or'(y)/r(y),
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we get by (7.5), (7.6), and (6.8)

p=3%-o [ F@a,

& = Yis — 84’ [: 1 — R(y)]rz(y) dy [: R(:c)r’(x) de + 2 — %)2
D() = (sin VX)/VX
— 24 -/_. : cos [VA(1 — R(y)lr'(y) dy [: cos [V R@))r(z) de.

Unfortunately, even in simple cases it does not generally appear possible to
evaluate D(A) further, let alone invert the ch.fn. [D(2it)]™* of C*. This seems to
be true for the normal distribution, that is, 7(z) = (1//27) exp (—3z%).

As a special case, let F(z; 6) be the Cauchy distribution F(z; ) = R(z — 6).
Then

R(z) = } + (1/) tan™ & = u;

1 1
@) = i

o =2 o(u) = (—+/2/x) sin® ru.
Consequently p = 1§ —1/4+°, and

DOy = A 4 (Y 1 = oos VR

Another case in which D(\) can be evaluated explicitly is R(z) = 3 + 3 tanh
z, in which case o(x) = /3 u(l — u).
B. Scale parameter. Let F(x; ) = R(x/0) for 8 > 0, and r(z) = R'(x). Put

o= ( [: 2[r"*(z) /r(z))] dx)cl/2

so that, by (7.2), o(u) = —eR™(u) r(R™*(u)). Since
e(R(Y) = — oyr(y), ¢'(R(y)) = —oly ¥(y)/r(y) + 1),
we obtain by (7.5), (7.6), and (6.8)

p=3-d L ¥’ 7*(y) dy,

& =Yis — 8 [ 11— Ry AG) [ RG) 2 P do dy + 2 — 367,

z = —cot 7u = R (w)

DO) = (sin VAV — 20° [ cos VA 11 — B4 Iy 7(3) + ()]

[: cos VAR@)zr'(z) + r(z)] dz dy.
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Consider again the case of the Cauchy distribution, where

R(z) =%+ %_tan"lx =u, r()= i_i—-l-_l-?’ z = — cot wu.
The above formulas give
=2 o) = (1/V2r)sin 2wy,
w=2 "4%’ D) =Sin\/\)‘(x1 —1>\/4«2‘
In this case D(\) has zeros at A = =", except for j = 2. In the representation
C* = Y *G}/«’f, where Gy, G:, --- are independent Gaussian random vari-

ables with mean 0 and variance 1, the star on the summation means to exclude
the term j = 2. Thus C? and W?* differ only in that W* has this term included.
This is a genuine case of a loss of a “degree of freedom”, that is, one less term in
the sum of the squares. :

C. Exponential parameter. Suppose, as before, that F(x; 6) = [R(z)]’ for 6 > 0.
Then, as in (7.3), ¢(u) = u log u and

p=3— 26722092593, d’= 145 — 88{125 + 19624 + 3429 = .0043566,
1
D(\) = (sin V/N)/VX — 2]; (1 + log t) cos VA (1 — )

t
fo (1 + log s) cos V/X s ds dt.

9. Further considerations.

A. Incorporation of a weight function. If, instead of the C3 statistic defined by
(1.4), we use a weight function ¢(z) = 0 as in [6], and define a new test statistic
C¥ by

Cl=n [ [Fu(z) — F(z; 8.)1%(F(z; 6,)) dF (z; b,),

we can carry through a theory paralleling that in the preceding pages. Here
¥(z) must have a bounded first derivative in 0 < z < 1, and we should be led

to the evaluation of the distribution of C** = f Y2(u)y(u) du, where Y (u) is

the process defined in Theorem 4.1. In this case we will need to use the results
for D;(\) given in Theorems 6.2 and 6.3, using

ous, ) = k(s, OVIERD,  eils) = o)V,

where k(s, ) is given by (3.8) and ¢(s) is as in (4.4). A method for evaluating the
function d;(\) in Theorems 6.2 and 6.3 is given in [6] for pi(s, £) of this form.
Then the ch.fn. for C* is [Dy(24t)] ™~
B. A Kolmogoroff statistic. In place of C’, we can consider
Kn = sup V/n |Fa(z) — F(z; 6,)],

—lrL0
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following the test proposed by Kolmogoroff (cf. [6]). The limiting distribution of
K, is the same as the distribution of

K = sup |Y(¢)],
[242<]

where Y (¢) is the process of Theorem 4.1; that is, ¥ (u) is Gaussian with mean 0
and covariance p(s, ) = min (s, {) — st — ¢(s)e(f). Unfortunately Y (u) is not
Markoffian and the usual methods of determining the distribution of K by dif-
fusion theory will not work. However, in the representation of Y (u) by (4.8),
the processes Y (u) and Z(u) are jointly Markoffian and a two dimensional dif-
fusion equation could be used.

Grenander and Rosenblatt [13] were led to an absorption probability for a
Gaussian process with covariance min (u, v) + g(u)g(v) in the estimation of the
spectrum of a stationary process. In their case the covariance is the sum of two
positive definite kernels, rather than difference, as in p(s, t), which simplifies
matters considerably in calculating distributions.
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