THE RATIO OF VARIANCES IN A VARIANCE COMPONENTS MODEL!
By W. A. THOMPSON, JR.

Virginia Polytechnic Institute and University of North Carolina

Summary. Our discussion will concern primarily A, the ratio of two variances
which arise in discussing the “mixed” incomplete block model. In Section 1 we
find first the class of invariant statistics for a test involving this ratio and second
the joint distribution of these statistics. In Section 2 we use these statistics to
construct a test (with certain optimum properties) of the hypothesis A < Ao
versus A > Ap.

1. The general incomplete block variance components model. Suppose that
yijfori =1,--- Ju,andj = 1, ---, b are independent and normal for given
t1, -+, t, with means E(y;; | t) = n.;(t: + b;) and variance ¢°. Here n;;is 1 or 0
according as the ¢th treatment does or does not occur in the jth block. The
total number of observations is N, that is, 2 . ;n:; = N. In addition suppose
that the ¢’s are independent and identically normal with mean 0 and variance
€. If t were an unknown parameter instead of a random variable, we would have
the general incomplete block model which appears in analysis of variance (see,
for example, Bose [1]).

In the general theory of incomplete block designs we make use of the block
totals By, - -+, B and of the “adjusted yields” @, - -+, Q. . It is known from
this theory that the latter form the basis of a vector space Vi of dimensionality
b, while the former generate a vector space Vo of dimensionality r, say. (In the
case of a connected design, 7 = u — 1.) Further V and V4 are orthogonal to
each other and to the error space V' of dimensionality N — b — r. We may
now choose an orthogonal basis for V/, say ¥y, -+, Yy .

Again from incomplete block design theory we know that

E(B;|t) = kjb; + nyty + majls + + -+ + nujtu,
E@Q:|t) = caty + cats + - -+ + ciutu

E(Y' l t) = 0’
and also that the covariance matrix of the B’s and Q’s and Ys for fixed ¢ is
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where k; = > i n;;, and the C matrix, involved in both the expectations and
variances of @, is again from incomplete block design theory.

Now we state several lemmas which were independently developed by Ma-
dow [5] and Skibinsky [6] and which we will find useful.

Lemma 1. E[E(X | Z)] = E(X).
LemMma 2. Var(X) = E[Var(X | Z)] 4+ Var[E(X | Z)].
Lemma 3. Cov(X, Y) = E[Cov(X, Y |Z)] + CovlE(X | Z), E(Y | Z)].

Applying. these lemmas, we find the unconditional means and the covariance
matrix to be

E(B)) = kd;, E@Q) = E(Y:) =0,

Cov(B,Q,Y) =
Tk O ! T T ! i 7
.10 0 * i * 10
0 k! ! ; !
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where the partitions with the stars in them are known though perhaps com-
plicated constants.

Now in order to simplify the problem as far as possible we will make the
transformation Q;, +++ , Qu — Z1, -++, Z,: Q = MZ where M is an orthog-
onal matrix such that

o, 0 -

MCM = | ————--

=)
o
I
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o D
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a diagonal matrix with the characteristic ‘roots of C in the diagonal. Note also
that

M'C*M = M'C(MM')CM = (M'CM) (M'CM)
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Thus Z;, -+, Z, have the covariance matrix D,c® 4 D, ¢ while Z,,1, --- ,
Z, are zero with probability one.

Because of the orthogonality of the Z’s among themselves and the mutual
orthogonality of Vi, Vo, and V’, the Y’s, B’s, and Z,, --- , Z, are N linearly
independent linear functions in the space of the 3’s and thus form a basis for the
y space. We may therefore make a transformation of the y’s into the ¥Y’s, B’s,
and Z;, ---, Z,. These last variables are of course multivariate normal. From
this and the nature of the covariance matrix of these final variates we see that
By, -+ ,By,Zy, -, Z.and Y Y7 are a set of sufficient statistics for the dis-
tribution.

Suppose now that we are interested in placing confidence limits on, or testing
hypothesis concerning, the ratio ¢/¢* = A, say. Let us consider a group G of
transformations on our set of sufficient statistics. Let G be

Bj = ¢B; + kic;, Zy=¢Zy, -+, Zy = cZ, Yy = AT ).

Since the effect of G is only to change the mean of B; and multiply the co-
variance matrix of (B, Z, Y) by an arbitrary constant, ¢’, the problem is in-
variant under G. In this connection, see Lehmann [4]. A maximal invariant
under G is

ZI/\/Z—_—Y?‘., Tt Zr/\/ﬁ-
Thus G induces the group of transformations G,
b; = ¢(b; + ¢j), o = e’ & =&,
a maximal invariant for which is ¢’/¢°> = \. Thus if we adbere to the principle of

invariance, then in making inferences about A, we may restrict ourselves to func-
tions of

L/NS T, o L/ VE P
We now find the joint distribution of the statistics

X1=Z1/\/61Xr+1y ey, Xe =2,/ VeXe,

where X,41 = 2.¢ Yiandn = N — b — r.
Let W: = Z:/ \/e: ; then W;is N(0, ¢* + e: ¢) and since the W’s and X,,,
are independent, their joint frequency function is

n 1 2 y
const(z,41)"" " exp [ ( _:f 3 .+ xo_;’l>:| .
Making the transformation

Xl:Wl/\/Xr+1> ) XT:WT/\/mi
we find that the probability element of X;, X;, -+, X,, X 4118

const(2,41) " exp [ Iri1 < + E >:I
-1l + [
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We may now integrate out over X, , noting that we have a gamma function
in this variable. We find the probability element of X;,---, X, to be

const (1 + E : >"(”+')/ 2,

=11 + e\

2. A one-sided test on \. Let wo: A =< Noand wy: N = A\; where Ay < M.
We now interest ourselves in tests of Ho: A &wp versus H;: M £ w;. The re-
gion between ¢ and \; is a zone of indifference to be determined by the experi-
mental situation. That is, if Ay < A < A1, then we do not particularly care
whether we accept Hp or H;.

Now consider an a priori distribution defined on wy which assigns probability
1 to A = XA, and similarly a distribution on w; which assigns probability 1 to
A= )\1 .

According to a theorem of Lehmann [3], if now we construct a most powerful
size a test of A versus A\; which has power 8 and if we can show that this test has
size a for the composite hypothesis and power = g for.all A in w;, then this test
is the one which maximizes the minimum power.

We may use the Neyman-Pearson Lemma to construct a most powerful test
of A\ = Ngversus A = A;. If we let

_l+ Y X/ Qe _ DY+ X 2T/ (e €M)
1+ 2 X3/ (U +eN) XY+ 22/ (ei+ein)’

then the above test becomes

if B > c¢, accept hypothesis A = A,
if R < ¢, accept hypothesis A = Ao .

Here ¢ is a constant chosen so that the test has significance level a.
The power function of this test is

B(\) = const exp [—l 2y + > 2 )] dy dz
R>c 2 2 e;o? + e%e?

(72
= const exp [—1 i+ ng):l df dg,
R'(M)>¢ 2

where we have made the transformation
F,=7Y,/a, t=1,---,m;
Gi = Zi/(eid® + €k €)', i=1---,7;
PP 4 261+ e) / (1 + o)
S+ 3610 +e)) /A + en)
We ma,y compute, by straightforward though lengthy algebra, that
_ () (Ce@ /(14 edo) = ZoeiGi / (1 + eiM))
fﬂ CF: + 260+ en) / (1 + en)’
4 i GiGille — €)' — M) / (1 4 &) (14 ¢ 20)(1 + en)(1 + edo)
P+ X6+ eN) / (1 + e))?

R'(\) =
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which is greater than 0 except when
F1=F2= cee =F“=G1=G2= DY =G'=O.
Thus R’ is an increasing function of A. Also if Ri < R:, then ¢ < Ry implies

that ¢ < R, so that / Ri>e = / rj>c. Therefore g is an increasing function of
R’ and thus of A. Thus

BA) = B(N\o) = aforall X ew, BA\) < B(\) forall X ewy.

Accordingly we have proved the
ToEOREM. The test, accept or reject Ho according as R < ¢ or R > ¢, ts the one
which maximizes the mintmum power among all invariant tests.

REFERENCES

[1] R. C. BosE, “Least square aspects of analysis of variance’’, Institute of Statistics,
University of North Carolina.

[2] H. CraMER, Mathematical Methods of Statistics, Princeton University Press, 1946.

[3] E. L. LEBMANN, Theory of Testing Hypotheses, Associated Students Store, University of
California, chapter 6, p. 10.

4] E. L. LEHMANN, ‘‘Some principles of the theory of testing hypothesis’’, Ann. Math.
Stat., Vol. 21 (1950), pp. 8-11.

[5] WiLLiam G. Mapow, “On the theory of systematic sampling, II”’, Ann. Math. Stat.,
Vol. 20 (1949), pp. 333-354.

[6] MoRrr1s SKIBINSKY, ‘A statistical model and test for the detection of gonial crossing
over”’, Unpublished thesis, University of North Carolina.



