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may be desirable to consider the distribution of K for £k = n/3, where the re-
sults are likely to be less simple and neat.
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ON THE CONVERGENCE OF EMPIRIC DISTRIBUTION FUNCTIONS!
By J. R. BLum
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1. Summary. Let u be a probability measure on the Borel sets of k-dimensional
Euclidean space E; . Let {X,},n = 1,2, -+, be a sequence of k-dimensional
independent random vectors, distributed according to u. Foreachn =1, 2, ---
let u, be the empiric distribution function corresponding to X;, ---, X, , i.e.,
for every Borel set A ¢ E;, we define u,(4) to be the proportion of observa-
tions among X, , --- , X, which fall in 4.

Let @ be the class of Borel sets in E; defined below. The object of this paper
is to prove that P{lim, ., sup.. |[u.(4) — u(4)] = 0} = 1.

2. Introduction. Let F(x) be a distribution function on the real line and let

{X.},n =1,2, ---, be a sequence of independent random variables distributed
according to F. For each n = 1, 2, --- let F.(x) be the empiric distribution
function corresponding to X;, --- , X, . The well-known theorem of Glivenko-

Cantelli (see, e.g., Fréchet [1]) states that
P{lim sup |Fa(z) — F(z)| = 0} = 1.

n—0 —0lT L0
Fortet and Mourier [2] have proved several theorems on the convergence of
empiric distribution functions in a separable metric space E. In particular, they
show that if E is a Euclidean space and u is a probability measure on E which is
absolutely continuous with respect to Lebesgue measure, then

(2.1) P{lim sup [ua(4) — u(4)| =0} =1,
where @ is the collection of open half-spaces in E. Wolfowitz [3] proved that
(2.1) holds without any assumptions on u. In this note we prove that if u is
absolutely continuous with respect to Lebesgue measure, then (2.1) holds for a
considerably more general class of sets.

To avoid repetition we shall assume from now on that every set considered is
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a Borel subset of E;. Let @, be the class of sets A each of which possesses the
following property. If £ = (x;, -+- ,x) e Aandy = (y1, ---, yi) is such that
y; < zifori =1, ---,k theny ecA. Let @;,5 =2, ---, 2" bethe 2 — 1
classes of sets which can be obtained by reversing, one at a time, the k inequalities
occurring in the definition of @, . Let @ = Uf—'ll @; . In this note we shall prove
the following theorem.

THEOREM. If u is absolutely continuous with respect to Lebesgue measure, then

P{lim sup lua(4) — u(4)| =0} = 1.

3. Proof of the theorem. In proving the theorem we shall restrict ourselves
to the class @; . The method of proof also applies to each of the classes @, - - -,
@, , and consequently, from elementary considerations, the theorem holds for G.

The method of proof depends on the following lemma.

LemMA 1. Let ® be a class of sets and suppose for each p > 0 there exists a finite
class of sets B(p) such that for each B & ® there exist sets By and B, in B(p) satisfying

1) B, Cc BC B,
i) u(By) — u(B1) = p.

Then P{lim, ., supz |u.(B) — u(B)| = 0} = 1.

The proof of the lemma is a direct consequence of the strong law of large
numbers and is omitted here.

In proving the theorem we shall assume that ¥ = 2. It will be clear from the
sequel that the method of proof applies to arbitrary k, although the details
become vastly more complicated.

Let R be a closed square in the plane which is subdivided into m* subsquares
of equal area by dividing each side into m equal length intervals. Let &;(R)
be the class of sets of the form A n R, with A ¢ @, . For each set T ¢ @,(R) let
B(T) be the set of boundary points of T with the exception of those lying on the
south and west boundaries of R. If x = (1, x2) € R, we shall say that z lies in
a subsquare if it lies in the interior or on the north or east boundary of the
subsquare. Let N(T') be the number of distinct subsquares in which the points
of B(T) lie. Then we have the following lemma.

LeMMA 2. For every T ¢ @,(R), N(T) = 2m — 1.

Proor. We may assume that the coordinates of the corners of the subsquares
are of the form (7, j) with¢ =0, ---, m; 7 = 0, ---, m. Now consider the
2m — 1lines of the form f(z) = z + k, withk = —m +1,-m+ 2, .-+ ,m — 1.
By identifying each subsquare with the coordinates of its northeast corner it is
easily seen that through each subsquare passes one and only one of these lines.
Let T ¢ @:(R). We shall show that on every line of the form f(x) = z + k there
lies at most one point of B(T). For suppose £ = (1, x2) and y = (y1, ¥2) are
two distinct points of B(T'), and both lying on a line f(z) = z + k. Assume that
z; < yYi,t = 1, 2. Then we can find a point z = (21, 22) ¢ T, with z; < 2;,
7 = 1, 2. But this contradicts the fact that x ¢ B(T). From this it follows that
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each line f(x) = x + k passes through at most one subsquare containing points
of B(T). Since there are 2m — 1 such lines the lemma follows.

Let (71, j1) be the coordinates of a corner of a subsquare with either 7; = 0
or j; = m, and let (¢;, j2) be the coordinates of another corner of a subsquare
with either 72 = m or j, = 0. By a path P in R we shall mean a linear continuum
of points connecting (7; , j1) with (¢; , j;) and satisfying in addition:

i) Every point £ = (x;, x2) ¢ P lies on the boundary of a subsquare of R.

ii) fe = (x1,2) e Pandy = (y1,y2) e P,andif 2; < 1, then z2 = 3. .

By induction on m it is easily verified that there are at most finitely many
paths P in R. To each path P we associate two sets T:(P) and T(P) in G:(R)
with B(T:) = B(T;) = P and such that T;(P) contains all points of P and
Ty(P) contains no points of P. Let @;,.(R) be the class of all sets obtained in
this manner for all possible paths P. Then @®; .. (R) is clearly a finite class of
sets for each integer m.

Let T ¢ @,(R), and let p be a positive number. For any positive integer m
we may then choose two sets T, and T in @ »(R) such that Ty ¢ T < T,,
and such that if 77 and 7”7 arein @y w(R) andf ' Cc TV Cc T Cc T” C T,
then 77 = T" and T: = T”. From the choice of T and T it is clear that 7. — T}
is contained in the set of subsquares which contain B(T). Let L(U) be the
Lebesque measure of a set U. Then from Lemma, 2 it follows that L(T, — T;) <
L(R) N(T) / m* £ L(R) (2m — 1) / m’. Since u is absolutely continuous with
respect to L, we may choose an integer m such that u(7T, — T:) < p. Applying
Lemma 1 we obtain the following lemma.

Lemma 3. P{lim, ., supreg,» |#a(T) — p(T)| = 0} = 1.

Let p be a positive number. Let A € @;, and let R be a square with u(R) >
1 — p/4. Write A = A;u A,, where A, = An R, A; = An R, and where R
is the complement of R. By virtue of Lemma 3 it suffices to show that
lim,, ., Sup4, |un(4z) — u(42)| = 0 on a set of sample sequences of probability
one. Now consider any sample sequence in the set of probability one for which
limg -y, pa(R) = w(R). Choose n so large that u.(B) < p/2. Since 0 < p.(4;) <
un(R) and 0 < u(4,) < u(R), we obtain |u.(4s) — u(4s)| < p/2, uniformly in
A4, C R, and the proof of the theorem is complete.

It appears to be a reasonable conjecture that the theorem is true without
the condition of absolute continuity. One can easily construct examples which
show that the method used in this note will no longer apply in the general
situation. It would be of some interest to extend the result to the general case.

REFERENCES

[1] Mavurice FrécHET, “Généralités sur les Probabilités. Elements aléatoire’”’, Gauthier-
Villars, Paris, 1950.

[2] R. ForTET AND E. MOURIER, ‘‘Convergence de la répartition empirique vers la réparti-
tion théorique,”” Ann. Sci. Ecole Norm. Sup., (3) Vol. 70 (1953)."

[3] J. WoLrowirz, ‘““Generalization of the theorem of Glivenko-Cantelli,” Ann. Math.
Stat., Vol. 25, (1954), pp. 131-138.



