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Proor. Theorem 2 is an immediate consequence of Theorem 1 and Lemma 1
of [2] which established that if, for some ¢, ni; = 0 for all j = 5, then such an
array cannot be extended to an eleven-rowed orthogonal array.

Remark. It was also shown in Lemma 1 of [2] that if £ = 10, then the array
satisfies a unique set of solutions. Namely, ni§ = 60, nis = nis = 0, nj; = 20,
nio = 0,foralls = 1,2, ---, 81. Hence any array constructed by the geometri-
cal method developed by Bose and Bush [1] will satisfy this set of solutions.
The problem of obtaining the totality of orthogonal arrays was investigated
neither in the considered case nor in related cases.

In conclusion, we wish to remark that this paper restores the validity of the
abstract published in Ann. Math. Stat., Vol. 25 (1954), p. 177, which was unduly
corrected in [2].
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A THEOREM ON CONVEX SETS WITH APPLICATIONS!
By S. SHERMAN
Moore School of Lilectrical Engineering, University of Pennsylvania

1. Summary and introduction. T. W. Anderson [1] has proved the following
theorem and has given applications to probability and statistics.

TuroreM 1. Let E be a convex set in n-space, symmetric about the origin. Let
f(x) = 0 be a function such that i) f(z) = f(—=z),ii) {z | flx) = u} = K. is convex

for every uw (0 £ u = «) and iil) ] f@) dv < «, then
E

1) ff(a; + ky) dx = ff(x +y)yde for 0=k £ 1.

The purpose of this paper is to prove what can be considered a generalization of
Anderson’s Theorem and to give different statistical applications.

Functions in L, satisfying the hypothesis were called unimodal by Anderson
and he noted in [1] that if we let ¢(y) be equal to the right hand side of (1) then
¢ is not unimodal in his sense insofar as it does not necessarily satisfy 7 (i.e.,
there exist f, E, and u such that {z|e¢(xz) = u} is not convex). His example is
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764 S. SHERMAN

the case where n = 2 and

3, |z =1, lza] = 1,
f@) =42, =21, 1<z =5,
0, other z,

where z, , 5 are the components of z relative to rectangular cartesian coordinate
system.” Let E be the set of vectors where |x,| < 1, |z5| < 1. The set {z | o(z) = 6}
is not convex sinceforz = (.5,4) andz = (1,0), ¢ (x) = 6, whilefor z = (.75,2),
¢ (x) < 6. The point of departure of this paper is to see what can be said about ¢.
This is achieved in Theorem 2, giving a stronger and more symmetrical state-
ment than Anderson makes (but one which does not yield more information for
his applications). The main Lemma, presented below, proceeds along the line of
his argument but squeezes out additional information (convexity of level lines)
under a weaker hypothesis (no symmetry assumptions) than Anderson uses at
the corresponding stage of his argument.

2. Main result. Let E and K be convex sets in n-space, & (with no symmetry
assumptions made at this time concerning E and K). For lebesgue measurable
A C &, let V(A4) be the lebesgue measure of A.

Lemma 1. If ®(y) = V{(E + y) n K}, then {y | ®(y) = u} is convex for each
real u and convex E and K.

Proor. For a1, a2 =2 0, a1 + a2 = 1, we show

(2) al[(E + yl) n K] + az[(E + yz) n K] C (E + a1Yy1 + azyz) nkK.

A typical element of the vector sum on the left hand side of the inclusion is
a(xr + y1) + ao(@e + yo) where zy, 22 ¢ E, 21 + 91 e K, 22 + y2 € K. Since E
and K are convex ai(z1 + ¥1) + ax(®: + ¥2) € K and ayx; + asxs € E. These im-
ply that ai(z: + y1) + ae(zs + ¥2) € (B + awys + asy2) n K which establishes re-

lation (2).

Suppose ®(y1) = « and ®(y2) = . It is desired to show that
(3) @(alyl + azyz) g u.
By (2),

4) P(ays + o) = Vial(E + 1) n K] + aol(E + 32) n K]}.

By the Brunn-Minkowski inequality,
V'"al(B + ) n K] + al(E + 32) n K]) Z @) + a/"(y2) 2 ™.
The last inequality with (4) yields (3), which proves the Lemma.

Let @y be the closed convex cone generated in the uniform norm (i.e.,
Ifll = sup {|f(z)|}) by the characteristic functions of symmetric, compact, con-
vex sets. Let €, be the closed convex cone generated in the L, norm (i.e., [If]l1 =

f |f(x)| dz) by the characteristic functions of symmetric, compact, convex sets.

2 The subscript notation is to have this denotation only for this example and one at
the end of the paper.



CONVEX SETS 765

Consider the norm || l|s given by ||flls = max {||f]], |Ifll1}. Let €; be the closed
convex cone generated in the || lls norm by the characteristic functions of
symmetric, compact, convex sets. Note that for £, K compact, convex and sym-
metric, the convolution of xx and xz, the characteristic functions of K and E
respectively, evaluated at ¥ becomes

xx*xu(y) = fo(x)xE(y — x) de = ®(y)

Furthermore ®(y) is continuous and by Lemma 1 has the property that
{y |®(y) = u} is a symmetric, compact, convex set for each real v > 0.
If we let ®(z, u) be the characteristic function of {y|®(y) = wu} then
e ma®(x; je) — ®(x) — 0 as e — 0. Thus ® ¢ € . The same argument
shows that ® ¢ @ and ® ¢ @;. The continuity of convolution in the || l: and
I ls norms implies

THEOREM 2. C1*C; C €y and Cy*C; C C;.

By observing that V(K) "xx € €, for K compact, symmetric, and convex and
using the continuity properties of translation in the L; norm one can extend the
conclusion of Theorem 2 to read C*C; = €.

It should be observed that for each ® £ @; and each vector y ¢ &, ®(ky) = ®(y)
for 0 < k =< 1. This is true for ®, the characteristic function of a symmetric
convex set, and therefore for convex combinations of these. Since this property
is preserved by taking uniform limits it follows that this property is true for each

® ¢ @; . Thus Theorem 2 implies Anderson’s Theorem, since f f@e+ydeeecs.
E

3. Applications. In the succeeding paragraphs we generalize to n dimensions
and strengthen slightly in the case of 1 dimension some results of Z. W. Birn-
baum [2] on random variables with comparable peakedness. It should be noted
that the statistical problems with which Anderson concerned himself could be
formulated in terms of peakedness and so the succceding remarks, e.g., Lemma, 2,
apply to his applications alco. Since in the applications Birnbaum is concerned
with continuous random variables [3] and peakedness about the origin we will
formulate our definitions for this case.

If ¥ and Z are continuous random variables whose values lie in & and whose
probability densities are ¢(Y) and f(Z) respectively, then Y is said to be more
peaked (about the origin) than Z if
3) (0 — Nwxx(0) = 0
for each compact, symmetric, convex E of & This conincides with Birnbaum’s
definition when n = 1.

LemMA 2. If 1) (¢ — f*xz(0) = 0 for each compact, symmetric, convex E C &
and 2) h € @z, then (p — f)*hxxz(0) = 0.

Proor. It suffices to show that (¢ — f)*Xpkxx(0) = 0 for compact, symmetric,
convex F since the closed (in || Il norm) convex cone generated by these
functions is dense in @; . However xs*xs € C; and so Lemma 2 follows from 1).
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Using the lemma above we establish an n-dimensional variant of Birnbaum’s
Lemma (with slight reduction of symmetry hypotheses).

Lemma 3. Let Y1, Y2, Z1, Zs, be continuous random variables with values in &
and probability densities ¢1(Y1), ¢2(Ys), f1(Z1), and fo(Z3) such that

1) Y. and Y, are independent, Z, and Z, are independent,

2) w2 & C3 andﬁ e C3

3) Y. is more peaked (about 0) than Z; for v = 1, 2.
Then

4) Y, + Y. vs more peaked (about 0) than Z, + Z, .

Proor. For each compact, symmetric, convex set, F,

Pr¥p2¥X g (O) — fixforxs 0)
= orrpaxx(0) — fixookxe(0) + fixoarxe(0) — frrfarx(0)
= (g1 — fOrearxe(0) + (02 — fo)xfixx£(0) = 0.

Note. The algebraic manipulations in the proof are already implicit at one
stage of Birnbaum’s argument but after that he uses devices whose direct ana-
logue did not go through for n > 1 and whose weight is carried here by previous
Lemma. The slight reduction in symmetry assumptions in the case n = 1 can
be established without all the machinery used here. The later parts of his paper
also go through for the multivariate case.

Here it may be wondered whether the requirement that ¢, ¢ @; and f; ¢ @3 can
be changed to 2 £ @3 and f» € @; . In the following example (constructed by T. W.
Anderson and the author) for n = 1 not only ¢ € €3, f2 € C; but also Y; and 7,
are symmetrically distributed and the other hypotheses of the Lemma are satis-
fied (with the exception of the random variables being continuously distributed,
but that can be taken care of by considering nearby distributions). Nevertheless
Y; + Y, is not more peaked (about 0) than Z; + Z,.

ExampLE. Let Y, , Y, be independent random variables, Z;, Z; independent
random variables such that ¥, = Z; with Pr {Y; = 5} = Pr {¥V; = -5} =
Pr{Z, =5} =Pr{Z = -5} = }and

(V) = Lo Inls1
210 8 0, Vo > 1,
PP L

0, |Zs) > 2.

Here it is not true that Y, + Y, is more peaked (about 0) than Z, + Z, .
We close this note with the following

Consecture. Let f ¢ Li(8) and let f flx 4+ y) de = ®(y), then®z(ky) = Px(y)

for each y €8, 0 < k £ 1, and for each compact, symmetric, convex £ C &
implies that f ¢ €, .
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ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Berkeley meeting of the Institute, July 14-16, 1955)

1. Nonparametric Mean Estimation of Percentage Points and Density Func-
tion Values. Joun E. WawLsH, Lockheed Aircraft Corporation.

Consider a sample of size n from a statistical population with probability density func-
tion f(z) and 100p per cent point 6, . The function f(z) is of an analytic nature. Some meth-
ods are presented for approximate nonparametric expected value estimation of 8, and of
1/f(6,). A nonparametric estimate whose expected value differs from 6, by terms of order
n~72 can be obtained. For 1/f(8,), an estimate whose expected value is accurate to terms
of order n~3 can be obtained. The estimates developed consist of linear functions of specified
order statistics of the sample. The order statistics used are sample percentage points with
percentage values which are near 100p. Let m be the number of order statistics appearing
in an estimate (m =< 7). Coefficients for the linear estimation function are obtained by solv-
ing a specified set of m linear equations in m unknowns. All estimates derived for 6, have
variances of the form p(1 — p)/nf(6,)? + 0(n~%2). Without additional information, all
that can be determined about the variances of the estimates derived for 1/f(8,) is that they
are 0(n~1/2). Thus both types of estimates are consistent but the estimates for 6, are more
efficient than those for 1/f(8,).

2. On the Concept of Probability in Quantum Mechanics. A. O. Barur, Stan-
ford.

Some mathematical consequences of the following particular probability measure are
discussed: Consider the one to one correspondence between the elements of the sample
space £ and the linearly independent elements of a unitary space \/ (in general a Hilbert
space). The probability measure of sets in @ is defined by p(S) = (Pgz, 2) = || Pgz |2,
where (z, ) = 1 and Pg is the projection operator on the manifold spanned by vectors
corresponding to the points in S. The vector z characterizes the system or the experiment.
It follows from p(S) that random variables are represented by linear Hermitian operators.
These random variables may have an intrinsic correlation coefficient even though they
are independent in the ordinary sense; they apply to a larger class of phenomena.

3. Two-Sample Estimates of Prescribed Precision. (Preliminary Report.)
Arran BirnBaUM, Columbia University and Stanford University.

Let 1, 22, --- be independent observations on a random variable X with density (or
discrete probability) function f(z, 6), with 8 unknown, 0 ¢ Q, E(X) = p = n(6), Var (X) =
o%(8). Suppose an unbiased estimate of u is required, with variance not exceeding a given



