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Summary. This paper is mostly concerned with a modification of the maximum-
likelihood estimate of the scale parameter of the extreme-value distribution for
which the bias can be explicitly obtained. A formula for computing this bias is
derived, and bias factors are tabulated for sample sizes from n = 2 ton = 112.
A brief comparison is made between this estimator and the optimum linear
estimator for a sample of size n = 6. Attention is called to a bias which results
from the maximum-likelihood estimate of the second parameter, and formulas
for the bias and the variance of this estimate are obtained. In the concluding
section, the significance of certain aspects of the maximum-likelihood estimate
of the scale parameter in practical applications is briefly discussed.

1. The equations for the maximum-likelihood estimate of the parameters.
Given the extreme-value distribution of Type I [2]

(1.1) ®(y) = exp (—e™"), y = al@ — u),
where ® denotes the cdf, the equations for the maximum-likelihood estimate
of the parameters may be reduced to [6]

1. e

(1.2) - =7

(1.3) e = e “/n,

where the summations are taken over the n values of x in the sample. The first
of these equations, although involving only the one unknown, e, is somewhat
intractable of solution. A variation on such a solution may be accomplished
as follows:

2. Modification of the maximume-likelihood estimate of «. Substituting
equation (1.3) in (1.2) one can write

—a(z—u)
(2.1) 1_5_ _Z__ge_'
o n

One may further note that from (1.1), using ‘“log” to represent natural
logarithm,

e—a(a:—u)

= —log®.
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Introducing the subscript ¢ to denote a specific sample value, (2.1) becomes

1 f_*_}:xilogd)i'

o n

So far this represents a transformation of the maximum-likelihood relations
and hence a form of the maximum-likelihood estimate of the parameters. At
this point it will be of interest to investigate the possible bias that would be
incurred if 1/a were estimated from the right-hand side of the last equation
under the assumption that the value of log ®; were the true value for each x;
(based on the true values of the population parameters). We denote such an

estimate by (1/a)o . Thus
5 l (I)z ~ —a(z—u)
(2.2) (1/a)o=j+2x_7;)§_=x+_z_§e__,

n

and we note that the values of a and u which appear explicitly or implicitly on
the right are the population parameters and not maximum-likelihood estimates

of those parameters.
One seeks to evaluate E[(1/a)o]. From the well-known relation

Elj] = Ela( — w)] = v = Euler’s constant (=0.577216),

one obtains

(23) EZ) = u + v/a.

It is aléo known that (see [6], p. 111)

(2.4) B (x: — we *“ ] = —n(l — 7)/a
and that

ED e "] = n.
It follows that

(2.5) B (e ™) /m] = =1 — 1)/ + w
Combining (2.3) and (2.5) in (2.2), we have
(2.6) E[(1/a))) = 1/a.

A modification of the relation (2.2) is proposed by substitution of Eflog ®.]
for log ®; . For any well-behaved cdf it is known that

1 1
(27) E[—log P, = m + ’I’I~’L_+‘—1

where ®,, denotes the cumulative distribution function corresponding to the
mth-ordered sample value proceeding from the smallest © = 21 to the largest
z = ., and where y(z) is the logarithmic derivative of the gamma function.'

+ ...+_17;=¢(n+1)——¢(m),

1 This is a tabulated function; e.g., H. T. Davis, T'ables of Higher Mathematical Functions,
Vol. 1. Principia Press, Bloomington, Indiana, 1933.
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There is undoubtedly some loss in efficiency in making the above substitution.
This at present we have not found it possible to measure. The bias introduced
by this substitution can be measured, and knowledge of it is essential.

3. General equation for measuring the bias. Denoting Eflog ®,] by (log &)
and replacing 1/a by B, the proposed equation for the estimate of 1/« is

(31) B =+ E xmaog q)m>/n'

Since (2.2) does not produce a bias, the bias incurred by the estimate 3 is given
by

(3.2) B — 1/e] = B} 2n((log ®n) — log &n)/nl.
Note that
(3.3) Elwy,, (log®,)] — E[uY_ log®,] = 0.
Subtracting this from (3.2) and noting definition of ¥ in (1.1),
34 aB[B — 1/a] = E[X. yn(log ®n)/n] — E[X ym log &n/n].
From (2.4)

ER. ym(—log®n)/n] = —(1 — ),
and with

Elym) = §m,

the general formula for the bias of B is given by
3.5) aB[B — 1/a] = —(1 — %) = 22 fm(—log &n)/n,
where

1 1 1

(—~log<I>m)-—"—L+m———-—+1+ +ﬁ: m=1,2, s My
and index m = 1 corresponds to smallest extreme and m = n to the largest, with
v representing Euler’s constant 0.577216.

4. Reduction of general formula for bias. Two formulas for the computation
of §j, exist in the literature. One was published by the author in 1947 [5]:

(4.1) Jm = v + Zo (—1)CrA* log (n — 1), r=mn—m,

where A’ represents forward difference of ith order. Another formula for 7,, was
derived by Lieblein and published in 1953 [7]:

T

(42) Gm = mCn 2 (—=1)Ciglm +3), gk) = (v + log2)/2, —n—m

7==0

Although for computational purposes there is little difference between the
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two formulas, the author found that the reduction in question proceeds more
directly from the substitution of (4.2) into (3.5). After considerable maneuver-
ing,” one arrives at

Z gmlog &) _ =~ -2 logr

where A®, refers to the kth-order difference with unit interval, proceeding in
the negative sense. This, in turn, can be expressed as

aa  ZClE®) LS )aleg .

r=2 1 (7‘ bl 1) 1=1

Here the differences are taken in the positive sense. This formula is better suited
to computation than the preceding one when differences of the logarithm are
already available. A further reduction gives a form which is better suited to
theoretical evaluation, as will be seen in the next section. This is

n— n—1
(4 5) M Z ( 1)"+1 A I:g 1 + ?];L [Zl (_1)r+lAr IOg l:l-

b. On the convergence of the above series. From the general theory of a
distribution function of an ordered sample value, it can be proved that as

n— o
E[3 yi(log ®:)/n] — E[2_ y: log ®:/n] — 0

if ® is continuous. Accordingly, from (3.5), the expressions on the right of equa-
tions (4.3) to (4.5) should approachy — 1 as n — . Set

n—1 r+1
(51) . R@=X DAL L3

By expanding a function f(z -+ ¢) in a series of differences about ¢ = 0 and dif-
ferentiating as to ¢, it is easily verified that

(52 F@) + o) = 3 (- 410,

where w(z) is periodic with period unity. Thus
(5.3) l/z + (@) = R,(2), x> 0.

2 An alternative reduction has been suggested by a referee. This involves writing out the
differences At log (n — 1) in (4.1) as linear functions of log (n — 7) and multiplying by the
expression for E[——Iog ®,,] given in (2.7). He obtains

- E Tn{—log &) = v + n2—3 (——ll Ciy log( + 1).

This becomes identical with (4.4) when expressed in terms of differences of the logarithm.
It is believed that the form (4.4) is more convenient for purposes of computation because
of the relation (6.6).
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It is known that [11]
(5.4) lim,,,, 7" logn | A" log z | = T'(x), x>0,
and that for finite n [3]

n!
g+ 1) (@ +n)’
Hence the infinite series R_(z) converges for positive values of x uniformly for
T = x > 0. Accordingly,

(5.5) | A" log x| < n>2 x>0.

lim,,, R () = 0.
It follows that

w(x) = 0, T =X,
We have then
R (x) = 1/, x>0,
and
R (1) = 1.

It is easily proved from (5.4) and (5.5) that the last series in (4.5) approaches
zero as n — . This completes the proof of the convergence of the sum of the
two series on the right of (4.5) to value unity. It follows that the series on the
right of (4.3) and (4.4) also converge to value unity as n becomes infinite.

6. Tabulation of the bias factor. For purposes of computing a table of bias
factors, the formula (4.4) has been used, since it was possible to obtain from the
National Bureau of Standards a table of A’ log 1 from ¢ = 1 to ¢ = 111. For
purposes of reference we refer to the series on the right of (4.4) as S(n). Substi-
tuting (4.4) into (3.5), the general equation for the bias reduces to

(6.1) BB — 1/a] = —1/a + 8(n)/a
or
(6.2) EB] = S(n)/a
In tabulating the bias for ready use it seems preferable to tabulate a factor
b, such that

(6.3) 1/a = b,E[B];
hence the bias factor b, is given by
(6.4) b, = 1/8(n),
where
_ n 1 7r—1 it1ai
(6.5) S(n) = ;;—G—?T) ;( 1)'™A* log 1.
As a computational matter it is to be noted that
_ 1 = il

The author has computed the series to seven decimal places, using the tabu-
lated values of A* log 1 furnished by the National Bureau of Standards. Through
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n = 21, values of S(n) were checked by alternate computation, using the series
on the right of (4.5) Values of S(n) agreed to within two units in the seventh
decimal place. Beyond that point computations of S(n) were checked by repeti-
tion and by comparing ‘cumulative adding-machine tapes. In this way S(n)
was tabulated to n = 112, accuracy being guaranteed to the sixth decimal place,
subject, of course, to the accuracy of values of A° log 1 furnished by the Bureau
of Standards.

A table of the reciprocals of S(n) carried to the nearest fourth decimal place,
and giving the bias factor b, , is shown below.

TABLE OF BIAS FACTOR

Estimate of 1/ = bnfg, n = size of sample

” b n by, ” l by n 123
1 — 31 1.0743 61 1.0388 91 1.0265
2 2.8854 32 1.0720 62 1.0382 92 1.0263
3 1.9606 33 1.0699 63 1.0376 93 1.0260
4 1.6503 34 1.0679 64 1.0371 94 1.0257
5 1.4941 35 1.0661 65 1.0365 95 1.0255
6 1.3997 36 1.0643 66 1.0360 96 1.0252
7 1.3363 37 1.0626 67 1.0355 97 1.0250
8 1.2907 38 1.0610 68 1.0350 98 1.0247
9 1.2563 39 1.0595 69 1.0345 99 1.0245
10 1.2294 40 1.0581 70 1.0340 100 1.0243
11 1.2078 41 1.0567 71 1.0336 101 1.0240
12 1.1900 42 1.0555 72 1.0331 102 1.0238
13 1.1751 43 1.0542 73 1.0327 103 1.0236
14 1.1625 44 1.0530 74 1.0323 104 1.0234
15 1.1516 45 1.0519 75 1.0319 105 1.0232
16 1.1421 46 1.0508 76 1.0315 106 1.0229
17 1.1337 47 1.0498 77 1.0311 107 1.0227
18 1.1264 48 1.0488 78 1.0307 108 1.0225
19 1.1198 49 1.0478 79 1.0303 109 1.0223
20 1.1139 50 1.0469 80 1.0300 110 1.0222
21 1.1085 51 1.0460 81 1.0296 111 1.0220
22 1.1037 52 1.0452 82 1.0293 112 1.0218
23 1.0993 - 53 1.0444 83 1.0289
24 1.0952 54 1.0436 84 1.0286
25 1.0915 55 1.0428 85 1.0283
26 1.0881 56 1.0421 86 1.0280
27 1.0849 57 1.0414 87 1.0277
28 1.0820 58 1.0407 88 . 1.0274
29 1.0792 59 1.0401 89 1.0271
30 1.0767 60 1.03%4 90 | 1.0268
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7. Application to Type II extreme-value distribution. In certain problems
where a finite lower limit bounds the observed variable, the Type II or Type
IIT extreme-value distribution is found more descriptive of the practical situa-
tion (e.g., application to breaking strength of materials [1], maximum wind
speeds [10], etc.). Since the treatment is the same except for sign, we examine
only the case of the Type II distribution. This distribution is usually given in
the following form (see formula (3.19) of [2]):

7.1) ¥ = exp [—(z/b)"7], z2>0,

where ¥ is the cdf of the variable 2z, and « and b are parameters. Taking loga-
rithms, this is the same as

(7.2) —log (—log¥ ) = a(log z — log b).
Thus if we set
(7.3) z = logz and u = log b,

the distribution (7.1) becomes identical with (1.1), with
(7.4) y = alzx — u) = a(log z — log b),
and the parameter « is the same in the two distributions.

Hence the estimation of the parameter «, or its reciprocal 8, may proceed by
setting

(7.5) z; = log 2;

and applying equation (3.1) for estimate of 8 followed by use of the tabulated
bias factor.

8. Comparison of estimator 3 with that of optimum weighting for sample of
size six. The estimatorf-} defined by (3.1) is a linear function of the sample

values z,, , with coefficients given by
Cm = (1 + (log ®n))/n, Z cm = 0.

In a recent monograph, Lieblein [8] has developed a linear unbiased estimator
of 8 in which the coefficients are determined so that the variance of the estimate
is & minimum. The “optimum”’ coefficients or “weights’” have been determined
explicitly for samples as large as six. For larger samples, a grouping procedure is
recommended. Specific optimum weights for each ordered value of larger samples
are not available. ' :

It will be of some interest to compare the series of weights of the two linear
estimators for a sample of size n = 6. For the estimator 3 of (3.1), the bias
factor for n = 6 is found from the table to be bg = 1.3997. Thus the unbiased
estimate of 1/a is be with coefficients bec,, , which turn out to be

w, = —.3383, w, = —.1050, w; = .0117,
we = 0804, ws = 1477,  ws = .1944.
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The optimum weights found by Lieblein for a sample of size six are
w, = —.4593, wy = —.0360, wy = .0732,
wy = 1267, ws = .1495, we = .1458.

It is perhaps of some significance that in each case the sum of the weights is
Z€r0.

9. Bias of estimate of parameter « from the maximum-likelihood equations.
A curious fact about the relationship of the parameter % to the maximum-
likelihood equations is that if u be estimated from the maximum-likelihood equa-
tions under the assumption that the other parameter a be known, a bias results.
The author discovered this some ten years ago while working on a related paper
[4]. With the present interest in the extreme-value distribution, it seems worth
while to bring this out. Evaluation of the bias proceeds as follows:

Define variable ¢ by

9.1) S E=e¢ "
and take
9.2) E= D ¢ /n, & =¢ ",

where z; is distributed as in (1.1).
With « known, % is to be estimated from (1.3) above. Denoting this estimate
by 4, we have as the equation of estimate

9.3) et = Y ¢ /n =
and note from (9.2) that

9.4) T = E/g
and hence that

©5) a(t — u) = —log (&/%).

Thus taking the moment generating function as (see [6])

G(6) = Ele™" "] = E[(¥/&)~",

G'(0) = aEld — ul.

In a previous paper (see formula (4.3) of [4]), the author showed that the
pdf of £is given by
P(®) d = [1/T(n)]e "'* (nE/t0)" 'n dE/to .

Hence -
(9.6) Q) = ’'T(n — 6)/T(n)

and

@0) = — I'(n)/T(n) + logn = v + logn — <1+;—+ R >
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Accordingly, the bias in the maximum-likelihood estimate of u, with o known, s
given by

07) E[a—u]=<1/a>[v+logn—(1+§+~-+ 1 )]

n—1
In this connection, note from (9.6) that
ElE/&] = G(—-1) =1
and hence that
(9.8) Ele % = e,

Thus, if, in the Type II distribution, one took the parameters as o and b %,
and if b~ were estimated from

9.9 Estimate of b™* = ¢ ** = §

with a known, no bias would result from such estimate.
It may be of interest in this connection to evaluate the variance of the esti-
mate 4, with parameter « known. From the definition of G'(6), it follows that

G”(0) = El*(4 — u)].
From (9.6) we have
G”(0) = (log n)G'(0) — (log n)I(n)/T(n) + T"(n)/T(n).
This can be reduced to

(9.10) G"(0) = [@O) + ¢ (n), -
where
(9.11) Y(x) = I'(z)/T ().

This latter function is a well-known mathematical function [9]. Its derivative
when z is an integer is an infinite series of the reciprocals of the squares of the
natural numbers beginning with #, and y/(1) = «°/6. Thus we have the result
that the variance of the estimate 4, with parameter a known, is given by

(9.12) E[(¢ — w)’] — (Bias)®
= (1/D)[#/6 — A +1/22 +1/3" + -+ + 1/(n — 1)7].

10. General remarks. A fact about the maximum-likelihood estimate of the
scale parameter 8 = 1/« as it relates to practical problems, which does not seem
to have been brought out in the literature, is the following: Inspection of equation
(1.2) or (3.1) shows that in this estimate values of the observed series x; that
are near the lower extreme are much more heavily weighted than those near
the upper extreme. From a theoretical point of view this is entirely rational. In
practice, however, the extreme-value distribution is often used to fit an observed
series of extremes without any very sound theoretical basis—merely because it
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seems to describe fairly well the behavior of the upper part of the series of
extremes. It should be pointed out that in such cases the maximum-likelihood
estimate of 8 may very well be worse than an estimate which gives less weight
to the lower part of the series.

For example, the distribution of Type I is sometimes used even when the
lower limit of the series of observations is fized. In such a case, theory is not
satisfied at that end of the series and, accordingly, some distortion of the theo-
retical fit at that end of the series is to be expected. Hence in such a case prefer-
ence for the maximum-likelihood estimate because of its greater theoretical
efficiency is questionable. o~
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