ON THE HYPOTHESIS OF NO “INTERACTION” IN A MULTI-WAY
CONTINGENCY TABLE

By S. N. Roy AND MARvVIN A. KASTENBAUM
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1. Summary. In a situation in which the observations are frequencies in a
multi-way contingency table such that the observations are supposed to be inde-
pendent and it is only the total number that is supposed to be fixed from sample
to sample, a hypothesis on the structure of the probabilities in the different
cells or categories is put forward. This hypothesis, by a certain analogy with
the customary terminology of analysis of variance, is defined to be the hypothe-
sis of “no interaction” and a large sample test of this hypothesis in terms of x*
is offered. Bartlett’s results [1] for the case of a 2 X 2 X 2 table and Norton’s
results [5] for the case of a 2 X 2 X ¢ table formally turn out to be special cases
of the results given here with these differences: (i) Bartlett’s and Norton’s re-
sults refer to ‘“analysis of variance” situations, with marginal frequencies along
at least two ways of the table being fixed, while in this paper, for reasons ex-
plained elsewhere [7], it is only the total n that is held fixed. (ii) Bartlett’s and
Norton’s papers do not give any indication of the mechanism behind the for-
mulae for the hypothesis of ‘“no interaction,” while this paper attempts to give
a definite mathematical (and perhaps also physical) mechanism behind the
formulae.

2. Preliminaries and the actual construction of the hypothesis of “no inter-
action”. To fix our ideas, consider a sample of fixed size n of independent ob-
servations distributed in a three-way table. Let n;j denote the observed fre-
quency, and p;j , the probability in the (ik)th cell, where ¢ = 1,2, -+« | r;
j=1,2 -+ ,8k=1,2 -, Alsolet the marginals be denoted by > nis =
Nojk 5 Zj Nijk = Niok , Zk Nije = Nijo, Zw Nije = Nook Zi,k Nije = Nojo ,
Zi-k Nije = Mo Z,-, ik Mg, = n (say). Let the corresponding summations
over pi;x be denoted by poji , Piok , Dijo, Dok , Dojo, Pioo, Pow - Since the cate-
gories are mutually exclusive and exhaustive, it is easy to see that these are,
in fact, the marginal probabilities, so that pwo = 1. The generalization to more
than three variates would be obvious. The likelihood function, which in this
case is also the probability of the n;z’s, is given by

Jh 5,0,k

2.1) ¢(ni’s) = ¢ (say) = H it LL P ~ 1L plic*.

4,7k

The last expression on the right side of (2.1) is the one we shall need [2, 4] when
we are interested in finding the maximum likelihood estimates of the p’s.
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750 S. N. ROY AND MARVIN A. KASTENBAUM

Hypothesis of independence between (3, j) and k, that is, the hypothesis of mul-
tiple independence. Consider
(22) Ho:piﬂf = PijoDoox (forz'= 1; 27 )T;jz 172) 7S;k= 1) 2) e ’t)’
the alternative being, of course, H = H, . It is easy to check, by summing over
¢ and j respectively, that (2.2) implies
2.3) Diok = PioPook and Doje = DojoPook -
Summing over & we have merely the consistency condition
(24) Dije = Pijo .
Notice that although (2.2) implies (2.3), the condition (2.3) will not, in general,
imply (2.2). However, for a normal population, (2.3) implies (2.2), Let us ask

ourselves what set of conditions is there which, when superimposed on (2.3), will,
together, be exactly equivalent to (2.2). One possible set might appear to be

He: Pijp = Dijo Diok Pojr

(2.5) D400 Pojo Pook
(fori=1’2’...,7'; j=1,2,"',8; k=1,2’...’t).

Check that (2.5) does not imply (2.2), but if on (2.5) we superimpose (2.3), we
have (2.2) all right. But (2.5) would be mathematically most difficult to handle,
in that the parameters on the right side of this equation are subject to sets of
side conditions, typical among them being

k % Dioo Pojo Dook

or

Dok Dojk
k Dook
and other such sets obtained by permuting the subscripts. In fact, (2.5) was
tried and was found to be intractable.
Physically a less natural and more abstract, but mathematically a much
easier, set of conditions seems to be

= Pqo0 Pojo

He:pig = @50 Qiox Qojk
@20 400 G0j0 Qook
@=1,2--,r i=1,2,--,8 k=1,2,---,0),

where we do not assume that gijo = p.j, ete., nor even that Qi = D Gin,
ete. Equation (2.7), after elimination of the ¢’s, leads to a number of constraints
on the p’s themselves, and it is easier to try to estimate the p’s subject to these
constraints and to D ;z pix = 1, rather than to try to estimate the ¢’s. The
only role of the ¢’s and of the hypothesis (2.7) is one of yielding certain con-
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straints on the p’s themselves. It will be shown in Sections 3 and 4 that (2.7)
is equivalent to just (» — 1)(s — 1)(f — 1) constraints on the p;;’s, which, to-
gether with ;4 pis = 1, make just (r — 1)(s — 1)(¢ — 1) + 1 constraints.
Notice that in this case we do not have constraints like (2.6) which, in practice,
turn out to be quite awkward.

It is clear that so far as the functional form is concerned we can, without any
loss of generality, replace (2.7) by just
(28) Ho:pim = gipqaongose (€ =1,2, -+ ,r5=1,2, -, 8,k = 1,2, -~ ,1).

TaEorEM. (2.3) N (2.7) or (2.8) = (2.2).

Proor. A straightforward proof, in which everything is spelled out, is given
for the case of a 2 X 2 X 2 table on pages 71 and 72 of reference {3]. A similar
proof has been obtained for the general » X s X ¢ table and will be shortly pub-
lished. The following, however, is another proof based on a general type of
reasoning.

Starting from (2.8) and summing over j and 7 and using (2.3) we have, re-
spectively,

(2.9) Diok = PiooPoor = q,ij 350905k

and

(2.10) Dok = PojoPook = QOiji' Qir50Q3 0k

Substituting in (2.9) for qo; from (2.10), we have

(2.11) 2%0'39% = Z [g50 Pojo Pooor./ Z, irjo qironl.
101 7 (]

So far as the functional form is concerned, this equation, without any loss of
generality, can be replaced by
(2.12) L = Z I:Qijo / Z Qi'jOQi'Ok]-

qiok ] i’
Now suppose that we regard (2.12) as a set of equations in ¢ (with
1=1,2,.--,rand k = 1,2, - -+ , {) in which ¢;,o’s act as a set of given parame-
ters, then (i) it is clear from (2.12) that any g will depend on the whole set
of g:j’s, the form of this dependence varying possibly with ¢ but obviously not
with &; (i) if qur (With¢ = 1,2, --- ,rand k = 1,2, --- , {) is a solution set,
fs(k)qi is also a solution set, where f3(k) is any function of ‘4’ alone. Together,
(1) and (ii) show that so far as the functional form is concerned

(2.13) qae = f1(@)fs(k)
and likewise
(2.14) qoir = Fa(f)fa(k).

Combining the two we can, without any loss of generality, write
(2.15) Pis = f(k)qijo = qooegiso (sY).
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Summing over k£ and over (¢, j) we have, respectively,
(2.16) pijo = D qon = Cing™® (s2y) and  pox = qoeg™® (say).

Summing up over any one of these two sets of relations, we have

(2.17) 1 = ¢q®%".
Substituting back from (2.16) and (2.17) in (2.15), we have
(2.18) Dijk = DijoPook -

Notice that if in (2.7) we were to replace (¢, 7, k) by (z, y, 2), then (2.7) would
be found to imply

_ Nl 9fax, 2)f3(y, 2)
(2.19) flx,y,2) = A ATIZORE

with nothing else connecting f1 , f2, f3, F1, F2, F; among themselves or with f.

The hypothesis (2.2) is the natural analogue of the hypothesis of “no mul-
tiple correlation” between (z, j) and k, while (2.3) is the natural analogue of the
hypotheses of no correlation between ¢ and % and between j and k. Thus the
hypothesis (2.7) is, as it were, a kind of bridge over the gap between (2.3) and
(2.2). By a certain analogy with “normal variate” analysis of variance we can
call it the hypothesis of “no interaction” between 7 and j. “Normal variate”
multivariate analysis doesn’t have any concept like this, because there this
situation does not arise.

3. A large sample test of (2.7) in terms of x2 [2, 6]. We start from (2.1) and
maximize ¢ with respect to p:;’s subject to Zi.j.k piix = 1 and also subject to
the constraints that we would get by eliminating the ¢’s between the equations
(2.7). We [2] end up with a number of solutions of the maximum likelihood equa-
tions subject to constraints, but among these solutions there is one and only one
solution set, say D:s’s having under (2.7) the property (i) that in large samples
(i)i,-k’s) - (true p?jk’s) in probability and (11) that Ei,j,k (’ﬂi,‘k - ni),-,-k)z/ni)i,-k
has approximately the x*-distribution with degrees of freedom equal to the num-
ber of constraints on the p’s that arise by eliminating ¢’s among (2.7). To fix
our ideas we shall first consider the case of a 2 X 2 X 2 table and then the
general r X s X ¢ table.

“No interaction” in a 2 X 2 X 2 table. Consider in this case the hypothesis
(2.7), and write it out in full as follows:

Hy: Pt = Q110 Q101 Qo11 P = @210 Q201 Qo11
’ @100 Q010 Qoo1 ’ @200 Go10 Qoo1 ’
Pz = Q110 Q102 Qo12 Doy = @210 Q202 Go12
G100 Q010 Goo2 ’ @200 Go10 Goo2 ’
(3.1)
P = @120 G101 Qo21 Doy = @220 Q201 Qo21
G100 Qo20 Goo1 ’ G200 9020 Goo1 ’
P = Q120 Q102 Go22 Do = Q220 G202 Qo22
100 Qoz0 Qo2 ) 200 Qo20 Qooz
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It is easy to check that by eliminating the ¢’s, we have what we will call the
“no tnteraction’ constraints, which in this case represent just one relation among
the p’s, namely,

(32) D111 P21 - P12 Paze
P11 Pr21 P212 Pr22 )

This is Bartlett’s hypothesis of ‘“‘no interaction’’ discussed in [1].
There is, of course, the other side condition on the p’s:

(3.3) Diine Pige = 1.
Recalling again Section 2, the likelihood function can be written as
(34) ¢ ~ I’Ik P .

The problem is to estimate the p;;’s by maximizing ¢ subject to the constraints
(3.2) and (3.3). Introducing the usual Lagrangian multipliers on (3.2) and (3.3),
we have the maximum likelihood equations

Mk N0 Gk = 111,221, 212, 122),
(3.5) Dijk Dk

Mk _ ML —0 Gk = 112,222, 211, 121).

Dijr Dijk
Now multiplying by p:; , and summing over ¢, j, k¥ and using (3.3), we have
u= —n,and

ik = +min + N)/n (G = 111, 221, 212, 122),

(3.6)
Pis = + (i — N)/n (G = 112, 222, 211, 121).

Substituting in (8.2), we have for A the cubic equation

(man + N (nam + M) — (nua — N) (g — N)
(nzu - N (nm - )\) (nae + >\) (ma22 + >\) '

There is one and only one root [4] of this equation which will yield an estimate
that tends in probability to the true population parameter point and lead to a
x’~distribution. It will be shown in a later paper that the numerically smallest
(real) root of (3.7) is the one which will satisfy this condition.

Solving for A and substituting in (3.6), we have the estimated 9;5’s occurring
in the usual x*. Since

87)

58 Rig — mpis = =\ (ijk = 111, 221, 212, 122),
' nig — npiw = N (ifk = 112, 222, 211, 121),

the final x* is given by
2

>
»

a—1

(3.9 X = Diik -

i,7,k=1

S|
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This will be a x* with d.f. = the total number of cells (8 here) — [the apparent
number of parameters (8 here) — the number of “no interaction” constraints
(1 here) — the number of linear relations on the p’s coming from the linear con-
straints on the n’s (1 here)] — [the number of linearrelations on the »’s (1 here)] =
the number of “no interaction” constraints = 1, in this case. It was shown in
[4] that, in all cases, no matter if 7, 7, and k are all “variates,” or if some are
‘“variates” and some are “ways of classification,” or if all are “ways of classifica-
tion,” we are going to end up with a x* with d.f. exactly equal to the number of
“no interaction” constraints like those of (3.2).

Notice that in (3.5), the Lagrangian u goes with the constraint ;.. piy = 1
which stems from D ;.x nix = n, and the Lagrangian X goes with the “no inter-
action’ constraints (3.2).

4. “No interactions” in an r X s X ¢ table. Let us consider here the hypothe-
sis of “‘no interaction,” and try to eliminate the ¢’s. To fix our ideas, consider
first the case of a 2 X 2 X { table. Looking into the mechanics by which (3.2)
is obtained from (3.1), it is easy to see that, corresponding to /3.2), we are
going to have

(4 1) P11¢ P22 — P11, —1D22, -1 - P11,t—2 P22, 1—2 — . — P11 Pt
P21: P12 P21,t—1 12,11 P21,t-2 D12, 12 Peo11 P12t

For a general r X s X ¢ table we can figure out that we are going to have the
following “no interaction constraints” :

{,l;: 1,2)"' y(t - ])1

(4.2) e N {j = 1,2, -, (s = 1),
) pi.st Drit prsk prjk .
li=1,2 6 —1)

This gives us (¢t — 1)(s — 1)(r — 1) constraints on the p;;’s. Checking the me-
chanics of the derivation of (4.2) from (4.1), it will be seen that (4.2) yields a
set of independent and exhaustive relations among the p’s by eliminating the
¢’s from (2.7). Here p- is, as it were, a pivotal element, and r, s, and ¢ the pivotal
subscripts. We can make any other three subscripts the pivotal ones, and thus
obtain another set of independent and exhaustive relations like in (4.2), which
would be exactly equivalent to (4.2), and so on.
Our likelihood function is

~ Bjk
(4.3) .¢ iI}kpm

Here we have to maximize (4.3) subject to the ‘“no interaction” constraints
(4.2), and the further constraint

(4.4) Zzyk pijx = 1.

Introducing for (4.1) the Langrangian multipliers A;;:{t = 1,2, -+, (r — 1);
i=12 -, (—1);k=1,2,---,( — 1)], and for (4.4) the Lagrangian
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multiplier ¢, and maximizing (4.3), we have for p;; the typical equations

(r=1) (s=1) (¢=1) (s=1) (¢=1)

n, 1 1 IcZ: N n k=1 Nise
st = J= =1 i8¢ J=1 =
+ +u=0, ML 4,0
Drst Drst ’ PDist Dist ’
(r=1) (t—1) (r=1) (s=1)
ik Nijk
Mpjt _ i=1 k=1 Y +u=0 Topsk __ iml  j=1 Y +u=0
( 4 5) Prie Drit ’ Prsk Drsk ’
: (t=1 (s=1)
Niik ik
Mgy LT g, My =TT
= 0, =
Dije Dijt Pisk Disk

(r—=1)

%+§i,,_k+“=o, i Rk,

Drik Drix Dijk Dijk
with, of course, ¢ = 1, 2,---, (»r — 1);5 =1, 2,--+, (s — 1); k =
1,2, .-+, (¢t — 1). Notice that with the pivotal subscripts (rst) goes a triple
summation over the N’s and a positive sign before that expression; with just
one subscript changed goes a double summation over the A’s and a negative
sign before that expression; with two of the subscripts changed goes a single
summation over the \’s and a positive sign before that expression; and finally
with all the subscripts changed, we have a single \;; with a negative sign be-
fore it.

As in the case of the 2 X 2 X 2, it is easy to see by multiplying both sides
of (4.5) by pis and summing over %, j, k, that u = —n. Thus solving for the
piin’s in terms of the n;3’s and \;j’s, and substituting in the “no interaction”
constraints (4.2), we have for \;; the following equations [for ¢ = 1, 2, -- -,
(r—137=12,--- ,(S— 1);k =1,2,--- , @ — 1)]:

(Mpse =+ pirst) (nijt + }/«ijt) = (nrsk - }lvrak)(nijk - mjk)
(nist - Miat) ('nrjt - #rjt) (’nisk -+ Itisk) (nrjk + I-tn'k) ’

(4.10)

where u,,; stands for the triple summation expression in (4.5), mist , prjt 5 prar fOr
the double summation expressions in (4.5), wij: 5 pisk , 4rjx for single summation
expressions in (4.5), and uij is simply Asj . As observed in connection with (3.7),
here also there is one and only one solution [4] of this equation which will yield
an estimate that tends in probability to the true population parameter point
and that will lead to a x’-distribution; it will be shown in a later paper that
the (real) solution for which the distance from the origin in the space of u;j’s
is the least is the solution leading to a x* distribution. Solving equations (4.10)
for the u;;’s, and ultimately for the A;’s, in terms of the n:5’s, we can find the
pij’s. Substituting these values in the usual expression for x* we have

(4.11) Diiekiin/ Mige + nisiie),
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where ¢ = 1,2, -+ ,r;5=1,2,---,8;k = 1,2 --. , ¢; and where

ne = -+1if 4fk = rst (the pivotal subscripts);

nij = —1 if any one subscript differs from the corresponding pivotal subscript;
7 = 1 if any two subscripts differ from the corresponding pivotal subscripts;
nize = —1if all subscripts differ from the corresponding pivotal subscripts.

Using [2.5] it will be seen that the statistic (4.11) will be distributed as a x* with
d.f. = number of “‘no interaction’ constraints on the p’s = (r — 1)(s — 1) (¢ — 1).
For several types of data on effects of exposure to radiation, the equations
(4.10) and similar equations for some four-way tables have been solved on an
electronic computor at Ann Arbor, Michigan, using the method of steepest de-
scent supplemented by some numerical graphical procedures. The details and
the final results for the actual data handled will be reported in a later paper.

5. Concluding remarks. The lines along which the concept and structure of
the hypothesis of “no interaction’ is to be generalized to multi-way contingency
tables of higher dimensions can now be indicated. For example, in a four-way
table the hypothesis analogous to (2.7), that is, the hypothesis of no “second-
order interaction’ seems to be

__ @ijx0 Qijor Qiokt Gojxe <000 Gojoo Gooko Goooz
@:;00 Giox0 Gi00r Qojx0 Gojor Gooxz

(5.1) Ho: Pijrt

In this case the hypotheses of four separate ‘“no first-order interactions’ follow
exactly the same pattern as in Section 4, and need not be separately considered.
The extension of (5.1) to higher-order ‘‘no interactions,” in the case of tables
of higher dimensions, forms a certain pattern which has been worked out and
which will be discussed in a later paper. The technique of testing (5.1) and “no
interaction’ hypotheses of higher order is essentially similar, in principle, to
what has been discussed in Section 4. The details alone are more complicated.
For higher-order “no interactions’” there are, however, various intermediate
cases of considerable interest which will be discussed later.

Going back to the three-way r X s X ¢ table again, it may be remarked [4]
that we have an asymptotically equivalent test if we plug into the x’-statistic
any B. A. N. estimate of the p;’s (consistent with (4.2) and (4.4)), and not
just the maximum likelihood estimate of the p;;’s subject to (4.2) and (4.4).
In particular, we can estimate [4] the p;;’s by minimizing the modified x* (some-
times called the x?) subject to (4.2) and (4.4). However, if we use the xi-statistic
for estimation, a much better procedure would be (i) to define the “no inter-
action” condition as a “linearized’’ counterpart of (4.2); (ii) to estimate the
pii’s by minimizing xi subject to (4.4) and the ‘linearized’ counterpart of (4.2);
and (iii) to plug these estimates into x; itself and use the xj-test, which is the
same as the x*-test. This has been done in [3] and the material will be offered
shortly for publication. Notice that (4.2) itself is a logarithmic linear hypothesis
of the nature of a set of contrasts.
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This paper, unlike most previous work [1, 5, 6], discusses the hypothesis of
“no interaction” in relation to the multivariate analysis situation only—that is,
where it is only the total n that is fixed and no marginal frequencies. For analy-
sis of variance situations—that is, when marginals along one or more directions
are fixed—the authors do not find the “no interaction” concept too meaningful
[7]. Nevertheless, starting more or less from the conditional probability set up
(which can be justified for the specific cases considered) the authors have dis-
cussed in a previous paper [6] the “no interaction” hypothesis and its tests for
the analysis of variance situations, too—that is, where the marginal frequencies
are fixed along one or more directions of the multiway table. The formal struc-
ture of the hypothesis and the formal analysis remain the same as for the multi-
variate analysis situation discussed in this paper.

We give below a few references which have a direct bearing on this paper.
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