A METHOD OF CONSTRUCTING PARTIALLY BALANCED INCOMPLETE
BLOCK DESIGNS

By J. W. ArcuBorp aND N. L. Jounson

University College, London

1. Summary. Partially balanced incomplete block designs were introduced by
Bose and Nair [1], who described a number of methods of constructing such
designs. Among these methods there is one based on incidence properties of
finite geometries. This uses the finite geometries associated with the Galois field
GF (p™) with addition and multiplication (mod p). By weakening the geometrical
structure (or, equivalently, by weakening the rules of addition and multiplica-
tion), it is possible to obtain new designs.

A basic feature of a finite projective geometry is that the coordinates are
elements of a finite field. What we do here is to allow the coordinates to belong
instead to a linear associative algebra @, of finite order » and with modulus, over
a finite field F. The procedure is summarized below and explained with more
detail in regard to two designs. (For accounts of a similar geometrical theory,
using an infinite field, see [7], [8], [9].)

2. Introduction. It is well known [6] that the elements of @ can be regularly
represented by n X n matrices with elements in #; such matrices are here said
to belong to @. Corresponding to the fact that @ has order n, there is a set of
n X n matrices, Uy, -+, U,, over F such that the elements of @ are repre-
sented by those and only those matrices of the form MUy + -+ 4 N U, with
A, * -, As, in F and the existence of a modulus means thatthen X n unit matrix
U belongs to the set. '

A coordinate mairiz X is a matrix of n rows and n(h + 1) columns partitioned
into h + 1 submatrices:

X = (Xo Xy -+ Xu),

where X, X1, -+, X; belong to @. X defines a class of equivalent coordinate
mairices, which consists of all matrices AX with 4 in @ and of rank n. A class
has rank r when any (and therefore every) member has rank r.

A projective space of dimension h and rank r over @ is a set, $x(@), of elements
(its posnts) in one-to-one correspondence with the classes of equivalent coordinate
matrices of rank r over Q.

A set of k& points, with coordinate matrices X', - - - , X* (the superscripts being
used to distinguish between coordinate matrices), is said to be linearly dependent
over @ when there exist matrices 4;, - - - , 4; belonging to @ and not all 0 such
that

AX 4+ -+ AXE=0.
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When @ is not itself a field, it is possible for two points to be distinct yet linearly
dependent (with 4;, A, both being not null). It may be noted that this kind of
possibility does not occur in ordinary geometry.

A prime of rank s in 8$;(@) consists of all points subject to a relation
Xolo + --+ + X3y = 0, where Lo, - - - , Ly, belong to @ and the matrix

Ly

L,
has rank s. A prime may or may not be an 8;_; . Two primes in, say, an $3(Q)
can meet in more than one point.

To obtain an incidence diagram showing which points of 8;(@) lie on which

primes of given rank s, we need a finite algebra @ and must therefore take F
to be a finite field. We examine below the simplest cases which arise when F is a
GF(2).
3. Algebras of dual numbers. The simplest kinds of finite algebra with modulus
are algebras of dual numbers over GF(2). Here, the finite groundfield has just
the two elements 0 and 1, and the algebra is of order 2, having as a base two ele-
nments % and e such that

w = u, ue = eu = e, ¢ =ae + Bu,

with « and 8 in GF(2); u is the modulus, and there are just four elements in the
algebra, namely, 0, u, ¢, and f = u -+ e.
There are four cases to consider, according to the values given to « and g:
(i) Ifa = B = 0, ¢ = 0. We have then the parabolic dual numbers. In the
regular matrix representation,

10 01
U‘“U“‘<0 1)’ UZ”(O 0)’

The non-zero elements multiply according to the table

W= u, e =0, ff=u,
e =Jfe=re,
ue = eu = e,
uf = fu = .

(i) Ifa = 0,8 = 1, then ¢’ = wand (e + u)® = 0. The elements u and f form
an alternative base to the algebra, which is thus seen to be isomorphic with
(i) and therefore has nothing new for us.

(i) fa = 1,8 = 0, then & = e and f* = (¢ + w)’ = f, while ¢f = fe = 0.
This gives a new algebra for which

10 0 1
Ul:U"(o 1)’ U2_<0 1>'
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(iv) If « = 8 = 1, then ¢ = e + u. This algebra is a field, the inverses of
u, ¢, f being u, f, e; it has no interest here.

4. The parabolic case. The matrices U, E, F representing u, e, f are here

o-( ), -0 Y. #-( ).

There is just one coordinate matrix (X, X; --- X;) of rank 0, namely,
(00 --- 0). There are 2*™ — 1 possible matrices of rank 1; no two are equivalent
and in each of them every X is either E or 0. There remain 4" — (2" — 1) — 1
possible matrices of rank 2; these fall into pairs of equivalent matrices
(Yo Y1-+-Y3) and F(Y, Yy --- Y3). Hence, $i(@) and $i(Q) contain, respec-
tively, 2"™ — 1 and 3(4"** — 2"*) points. For h = 2, these numbers are 7 and 28.

Confining our attention now to the case A = 2, the 28 points P; , - -+, Py in
$3(@) may be assigned coordinate matrices as follows:

1. (U00) 2. (UE0) 3. (UOE) 4. (UEE)
5. (0U0) 6. (OUE) 7. (EF0) 8. (EFE)
9. (00U) 10. (EEU) 11. (OEU) 12. (EOU)
13. (UU0) 14. (UFE) 15. (UUE) 16. (UF0)
17. (OUU) 18. (EFF) 19. (EFU) 20. (OUF)
21. (UUU) 22, (FUF) 23. (UFF) 24. (FFU)
25. (UOU) 26. (FOU) 27. (FEF) 28. (UEF)

Details regarding this tableau will be found in [5]. It is enough here to point
out, as regards its structure, that any two matrices in the same row are linearly
dependent and that any entry, say (X, X; X»), is related to the entry (¥, Y7 Y2)
beneath it by the transformation Yo =X, , V1 = Xo+ X2, Y, = X;.

The same coordinate matrices, written as columns, and numbering, specify
the 28 primes m;, - -+, mg of rank 2.

Diagram 1 shows which points lie on which primes. The numbers down the
left-hand side of the diagram can be taken as referring to the primes and the
numbers along the top as referring to the points. If 7; contains P;, the fact is
registered by placing a cross where the row corresponding to ; meets the column
corresponding to P;. It will be recognized that this design is a group-divisible
PBIB (as defined by Bose & Connor [2]; see also [3], [4]), with parameters

v==>=28, m=17, n = 4, r =k =6, M= 2, A= 1.

This corresponds to the fact that the primes divide into 7 sets of four and
the primes in any one set have the property that any two of them meet in two
distinct and yet linearly dependent points. Such a set has been called a quadri-
lateral of rank 1. Any two primes belonging to different quadrilaterals of rank 1
meet in just one point.

The 28 points are divided, in a dual manner, into 7 quadrangles of rank 1.
Any two points in one such quadrangle are joined by two primes which are
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DIAGRAM 1
Incidence diagram for the primes of rank 2 in 83(Q)

A B C D E F G
1 2 3 4 S 6 7 8 (9 10 11 12|13 14 15 16 |17 18 19 20|21 22 23 24 | 25 26 27 28

9| xx X X b4 X

12 X X | x X X X

28 X X X X X X

i =R eI |
s
o]
»
o]
”
"

distinet but linearly dependent. Any two points in different quadrangles of
rank 1 are joined by just one prime.

The two divisions of points and primes determine a subdivision of the diagram
into 49 4 X 4 squares. Those which contain crosses contain them in the form
of a PBIB, and there are three types of such subsidiary designs. These marked
squares are themselves arranged as the elements in the well-known pattern
associated with the ordinary finite projective geometry over GF(2). The patterns
inside the 4 X 4 squares reflect the structure of the base of the algebra, while
the pattern of the 4 X 4 squares reflects the structure of the groundfield.
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DIAGRAM 2
. . . . 2
Incidence diagram for the primes of rank 1 in $3(Q)

123 4 5678 | 9 101112 |13 14 15 16 | 17 18 19 20 | 21 22 23 24 | 25 26 27 28
1 X X XX | XX XX X X X X
2 X XXX | X XXX X X X X
3 X X X X | XX XX X X X X
4 X XXX | X XXX X X X X
5 X X X X X X X X | X XXX
6 X X X X X XXX | X XXX
7 X X X X X X X X X X X X

. . 2 . . .

There are seven primes of rank 1, o1, - - - , o7 in 8$3(®), with coordinate matrices

Ly
<L1> as follows:
L,
0 E E E 0 E 0
<nz<0>, @:(O), 03:<E>, 0'4:<E>, 05:<E>, 06:<0>, w:(E).
E 0 0 E E E 0

Each prime of rank 1 consists of the 4 sides of a quadrilateral of rank 1 and
thus contains 12 points of the space. The incidence diagram is given in Diagram 2.

This design is, of course, a simple form of group-divisible PBIB of the type
described by Bose and Connor [2].

In $3(@) there are 7 points, Qs , - - - , Q7 , with the coordinate matrices

Q:: (00E), @ :(EO00), @Qs: (EEO0),
Q, : (EEE), @s : (OER), Qs : (EOE), Q7 : (0EO).

There are 28 primes of rank 2 and the incidence diagram for these is obtained
by interchanging the rows and columns in the diagram for primes of rank 1 in
85(@).

Each prime of rank 1 in 83(®) contains all of the points @, - -+, Q. The
incidence diagram for these primes is therefore just a 7 X 7 array of crosses.

5. The non-parabolic case. The matrices U, E, F representing u, e, f are now

o=, =Y, r=(1 ).

There is just one coordinate matrix (Xo X; - -+ X3) of rank 0. There is one
family of 2" — 1 possible matrices of rank 1, no two being equivalent, in each of
which every X is either F or 0; another such family is obtained by replacing
everywhere by F; and there are no more primes of rank 1. There remain
4" — 92" — 1) — 1 = (2" — 1)® possible matrices of rank 2 and no two
are equivalent. Hence, $i(®) contains two families each of 2"*' — 1 points and
$2(@) contains (2" — 1)? points. For & = 2, these numbers are 7 and 49.

. Again confining attention to the case h = 2, the 49 points, Pi, .-+, Py, In
$5(@) may be assigned coordinate matrices as follows:
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1. (U0) 2. (UF0) 3. (UOF) 4. (EF0) 5. (EFF) 6. (UFF) 7. (EOF)
8. (UU0) 9. (UUF) 10. (EU0) 11. (EEF) 12. (UEF) 13. (EUF) 14. (UE0)
15. (UUU) 16. (BUU) 17. (EEU) 18. (UEE) 19. (EUE) 20. (UEU) 21. (UUE)
22. OUU) 23. (FEU) 2. (FEE) 25. (FUE) 2. (0EU) 21. (OUE) 28. (FUU)
29. (UOU) 30. (EFE) 31. (UFE) 32. (UFU) 33. (UOE) 34. (EOU) 35. (EFU)
36. (0U0) 37. (0EF) 38. (FUF) 39. OUF) 40. (FUO) 41. (FE0) 42. (FEF)
43. (000)  44. (FOE) 45. (OFU) 46. (FOU) 47. (FFU) 48. (FFE) 49. (OFE)

There are also 49 primes of rank 2, 7y, ---

, Tay , to which we may assign

coordinate matrices according to the above scheme by writing the matrices as
columns instead of rows.

The array of points has been organized in the following manner. The matrix
of products (XoE X E X,F) is the same for all matrices (X, X; X») in any given
row of the array. (We could alternatively have used F in this connection in
place of E and so have obtained an alternative display of the points.) Then,
also, any entry (Y, Yy Y3) in the array is derived from the entry (X, X; X,)
immediately above it (the first row counts as following the seventh cyeclically)
by means of the homographic substitution of period 7:

Y0=X0+X2, Y1=X0, Y2=X1-

Diagram 3 shows the incidences of the points and primes of rank 2. To save
space, only the first seven rows of the design are shown here. Each further set of
rows can be obtained by moving each mark 7 columns cyclically to the right and
7 rows downwards (see the 28 X 28 pattern shown earlier), and repeating this
process. In the completed design, the rows (which represent the primes) are
numbered as follows:

26 21 35 6 42 44 10
28 20 33 4 37 48 13
23 18 30 7 40 45 9
3 19 34 2 39 47 12
22 15 29 1 36 43 8
25 16 32 3 41 49 1
27 17 31 5 38 46 14

Each point lies on 9 primes and each prime contains 9 points. Any given prime
is met just once by each of 36 primes and 3 times by each of 12 primes. These 12

DIAGRAM 3
. . . . . . 2
Part of the incidence diagram for points and primes of rank 2 in 8$3(@®)
1234567 | 8—14 |1516171819 2021 | 2223 24 25262728 | 22—35 36—42 43—49
26| xx X XX X XX X
28 XX X X XX |XXx X
23 XX X X X X X X X
24 XX X X 3 X X X X
22 | x X X XX X X X X
25 X X X X X XX X
271 x  x X X X XX X
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primes fall into 6 pairs, those in any pair meeting the given prime in the same 3
points, while each point on the given prime belongs to 2 of the 6 pairs of primes.
A corresponding dual arrangement is obtained by starting with any point.

These designs are PBIB with two associate classes but are not group divisible.
For these designs,

b=0v =49, r=1L=09, M=1, A = 3,
ph =25 ph=pn=10, ph=2
ph =230, ph=pn= 6 ph=25

The dual design is of identical form.

DIAGRAM 4
Incidence diagram for the primes of rank 1 in $3(®)

1 2345617 8910 11 12 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28
1 X X XX XXX X X XX XXX X X XX X X X
2 X XXX XXX X XX XX XX
3 X XXX XXX
4 X X X XX XX
5 X X XX XXX
6 X X XXX XX X X XXX XX
7 X X X X X XX X X X X X XX
8 X X X X X X X X X X X X
9 X X X X X X X X X X X X
10 X X X X X X X X X X X X
11 X X X X X X X X X X X X
12 X X X X X X X X X b d X X
13 X X X X X X X X X X X X
14 X X X X X X X X X X X X

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
1
2 X X X X X X X
3 X X X X X X X X X X X X X X
4 X X X X X X X X X X X X X X
5 X X X X X X X X X X X X X X
6 X X X X X X X
7 X X X X X X X

X X X X X X X X X

9 X X X X X X X X X
10 X X X X X X X X X
11 X X X X X b4 X X X
12 X X x X X X X X b
13 X X X X X X X X X

14 X X X b4 X X X X b'q
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There are 14 primes of rank 1, o1, -+, ou, with coordinate matrices as
follows:

)+ -6 ) -) -B)
) ) =€) ) =) =) 0

The incidence diagram is shown in Diagram 4. Each prime of rank 1 contains
21 points to which 7 primes of rank 2 contribute equally; this may be expected
from such identities as R

-6~ (-6 (-

These 7 primes together contribute all the points of the associated prime of

rank 1 each 3 times.
Each prime of rank 1 is met 7 times by each of the 6 other primes with which

it is grouped in the diagram and 9 times with each of the 7 primes of the other

group.
This design is a PBIB with b = 14,» = 49,7 = 6,k = 21, \; = 4, Ay = 2, and

ph = 5, piz = P%l = 6, péz = 30,
Ph =2 ph=opn=10  pp =25

DIAGRAM 5
. . . . 1
Incidence diagram for primes of rank 1 in $3(®)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 X X X b4 X X X X X X
3 X X X X X X X X X X
5 X X X X X X X X X X
6 X X X X X X X X X X
4 X X X X X X X X X X
7 X X X X b'¢ X X X X X
2 X X b4 X b4 X X X X b'd
14 X X X X b4 X X X X X
12 X X X X X X b 4 X X X
9 X X X X X X X X X X
8 X X b4 X X X X X X X
11 b X X X X X X b4 X X
13 b4 X b4 X X X X X X X
10 X X X X X X b4 X X X
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Its dual (regarding columns as “blocks” and rows as ‘“varieties’) is a group-
divisible PBIB with b = 49,v = 14,r = 21,k = 6,\; = 7, X\, = 9, and

pi = 5, piz = pa = 0, P =1,

ph=0, pi=pnh=06 pn=0.
The space $3(@) contains 14 points, @1, - - - , @ , With coordinate matrices
1. (OEE) 2. (EEE) 3. (EOE) 4. (E00) 5. (0E0) 6. (00F) 7. (EE0)
8. (00F) 9. (FFF) 10. (FOF) 11. (F00) 12. (OFF) 13. (FF0) 14. (0F0)

The previous diagram, with rows and columns interchanged, shows the inci-
dences between the points of this space and its 49 primes of rank 2.

Diagram 5 shows the incidences for the primes of rank 1 (which we can take
tobe oy, -+, ou as above). Each prime of rank 1 contains 10 points. It is met
8 times by each of the other 6 primes in its own set and 6 times by each of the
7 primes in the other set.

It is, of course, of no special interest as a PBIB design.
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