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ON THE UNIQUENESS OF WALD SEQUENTIAL TESTS!

By LioNEL WEIss
University of Oregon

1. Summary. Under certain mild restrictions on the distributions involved,
it is shown that the probabilities of the two types of error uniquely determine
the two hounds characterizing the Wald sequential probability ratio test.

2. Introduction. X;, X;, - - - is an infinite sequence of independent and iden-
tically distributed chance variables. The density of X is fi(z) under H;, where
¢ = 1, 2. We assume that under either H; or H, the chance variable f,(X;)/f1(X1)
has a distribution which assigns a positive probability to any nondegenerate
interval in the interval [0, « ], and zero probability to any point in that interval.

B, A shall denote the stopping bounds characterizing the usual Wald sequen-
tial probability ratio test. As usual, B < A. Q{R; T shall denote the probability
under H; that the value of the final probability ratio is in the region R, when
the sequential stopping rule is to stop the first time the value of the probability
ratio is in T, and not before; u(z) shall denote the set of numbers less than or
equal to z; v(z) shall denote the set of numbers greater than or equal to z. The
union of any two sets R and 7' shall be denoted by B + T. We note the following
easily proved inequality for future reference: if b, @ are any two finite positive
numbers with b < a, then

Qou(b); u(b) + v(a)] < b-Qufu(d); u(d) + v(a)l.

In what follows, 6;, 6, - - - shall be numbers between zero and one.

For any given B, A, we denote by a(B, A) the probability of accepting H,
when H, is true when using the Wald test with bounds B, 4 ; while 8(B, 4) de-
notes the probability of accepting H; when H, is true and the Wald test with
bounds B, 4 is used.

3. Proof of uniqueness. Let a, 8 be two given numbers between zero and one,
such that the equalities a(B, A) = a and (B, A) = B imply the strict inequali-
ties0 < B < A < . Then we have:

THaEOREM. There is at most one solution to the equations a(B, A) = o, B(B, A) =
B, the unknowns being B, A. '

Proor. We assume that there is at least one solution to these equations. Let
B be any number for which it is possible to find an A greater than B with

a(B, A) = a.

Received August 29, 1955.
1 Research under contract with the Office of Naval Research.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. MIKOIRS ®

5 ()

v

e 2

WWw.jstor.org



UNIQUENESS OF TESTS 1179

Fixing B, we shall show that the equation a(B, A) = a is satisfied for exactly
one value of A. This is so because for a fixed B, a(B, A) is a strictly decreasing
function of 4 under the assumptions made above. We denote the value of A
satisfying a(B, A) = a by A(B). It is easily seen that 4 (B) is a strictly decreas-
ing and continuous function of B, and the set of all B for which A4 (B) exists is an
interval.

From now on, we shall denote 8(B, A(B)) by 8(B). Our next step is to show
that B(B) is a strictly increasing function of B, and this will complete the proof
of the theorem. For a given B, we can find a positive AB so small that B + AB <
A(B + AB). We denote A(B) — A(B + AB) by AA. We denote by R the set
of numbers no greater than B, by S the set of numbers between B and B + AB,
by T the set of numbers between A(B) — AA and A(B), by U the set of num-
bers greater than A4 (B), and finally we denote the set R + S+ T + U by V.
We have the following relationships, where z is the variable of integration:

8(B) = QuR; V1 + :m Q [u (f—*) S (’;’) +o (’zi)] dQilu(z); V)

R 1 I ) P
and

(3.2) B(B + AB) = Qi[R; V] + QufS; V1.

Then we get

B(B + AB) — B(B) = QS; V]

(3) [ e (B)u(B) + v (2)] d@duter m
- ,“:I:A < [“ (?) u (‘13) +v (121)] dQulu); V).

Also, we have that the expression we get by replacing the subscripts 2 in the
right-hand side of (3.1) by the subscripts 1 is equal to 1 — a, as is the expression
on the right-hand side of (3.2) when the same change of subscripts is made. Then
we get by subtraction
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QlS; V] = f;ms Qx[u (g) U (g) +v <§>] dQulu(z); V1
e () iu(®)+o(4)]sets

Using some obvious continuity properties of the function @, , we get
(3.5) Q[S; V] = (B + 6:AB)-Qi[S; V],
and combining (3.3), (3.4), and (3.5), we get

B(B + AB) — 8(B)

SCETYCY [u (g) u (ﬁi) + (;i)] dQuu(z); V]
(36) +@+oan [ . [u (f—) (B) +o (A>] dQilu(z); V]
N I
Lo e[w(B)iu(B) + o ()] aatuia 7

Again using continuity properties of Q;, we can write (3.6) as follows:

B(B + AB) — 8(B)

= (B + 6:AB)-Q: [u (B +BMB) o (B +BozAB)
) et
+ (B + 6AB)-Q [u (A(B) I_; MA) v (A(B) ﬁ &AA)
S P
- @[« (5+am) (5ams) o (5oas) | 04 v

- o[+ (s Zoma) o (avmr 2oma)

++ (2t ama)| ot

(34)

3.7

But Q)[S; V] = (B + 6:AB)-Qi{S; V], while Qu[T; V] = (A(B) — 65-24)-
@i[T; V], and using these relationships in (3.7) we get:
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8(B + AB) — B(B)
= (B + 6AB)-QilS; V]- { 1 [“ <B +B02AB> U (B +302AB>
+ ()
~ & [“ (B +Bo4AB)‘ v (B +Bo4AB> to (M—A"M"B)]}
+ QuT; V- {(B + 0,AB)-Q, [u (zﬂB)li—-m);
- 4B - 0a)@s[u (B )

Recalling that

@ [0+ (3)] < @[ty u + ()],
o (atm) (i) +» ()]

3@ Q‘[ <A39>> (AZ%))”(A&))]

and from continuity considerations on @, and @ , it follows that each of the two
expressions in braces in (3.8) becomes positive for small enough AB. This proves
that B(B) is strictly increasing in B, and completes the proof of the theorem.

(3.8)

4. Extensions. All the results above go through in the same way under the
following somewhat less restrictive conditions: Under either H; or H, , the
chance variable f2(X,)/fi(X:) has a continuous distribution which assigns a
positive probability to any nondegenerate subinterval of [C, D], where 0 < C <
1 < D; and the equalities a(B, 4) = @ and B(B, A) = 8 imply the strict
mequa.htles C<B<AKLD.



