ON A MEASURE OF THE INFORMATION PROVIDED BY
AN EXPERIMENT! ?

By D. V. LiNDLEY
University of Cambridge and University of Chicago

1. Summary. A measure is introduced of the information provided by an
experiment. The measure is derived from the work of Shannon [10] and involves
the knowledge prior to performing the experiment, expressed through a prior
probability distribution over the parameter space. The measure is used to
compare some pairs of experiments without reference to prior distributions;
this method of comparison is contrasted with the methods discussed by Black-
well. Finally, the measure is applied to provide a solution to some problems
of experimental design, where the object of experimentation is not to reach
decisions but rather to gain knowledge about the world.

2. Introduction. Shannon has introduced two important ideas into the theory
of information in communications engineering. The first idea is that informa-
tion is a statistical concept. The statistical frequency distribution of the sym-
bols that make up a message must be considered before the notion can be
discussed adequately. The second idea springs from the first and implies that
on the basis of the frequency distribution, there is an essentially unique func-
tion of the distribution which measures the amount of the information. It is the
purpose of the present paper to apply these two ideas to statistical theory by
discussing the notion of information in an experiment, rather than in a mes-
sage. The second of Shannon’s ideas has been applied to statistical theory by
Kullback and Leibler [6], [7], [8]; but our application is quite distinet from
theirs. The interpretation of Shannon’s ideas in current statistical theory has
been given by MecMillan [9]. The discussion in that paper is related to, and
partly inspired, that given here. A referee has kindly pointed out that Shan-
non’s theory has been applied in psychometric problems by L. J. Cronbach in
an unpublished report [14]. Definition 2, in particular, is used by Cronbach.

The situation in communications engineering is that there is a transmitted
message, z, which is received as a message, y. By considerations of the informa-
tions in = and y it is possible to discuss the rate at which information has been
transmitted along the channel. The analogous description in statistical theory
is provided by replacing = by the knowledge of the state of nature, usually ex-
pressed by the knowledge of a finite number of parameters, prior to an experi-
ment, and by replacing y by the knowledge after the experiment. The com-
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parison of the knowledge before and after the experiment makes it possible to
discuss the amount of information provided by the experiment. The average
of this, for fixed prior knowledge, determines the average amount of informa-
tion. The measure of information is given by Shannon’s function. But, just as
it is essential to consider the statistical character of the message z, so it is neces-
sary to consider the statistical character of the knowledge of the state of na-
ture. Prior probability distributions are therefore basic to the study. It seems
obvious to the author that prior distributions, though usually anathema to
the statistician, are essential to the notion of experimental information. To take
an extreme case, if the prior distribution is concentrated on a single parameter
value, that is, if the state of nature is known, then no experiment can be in-
formative.

It may happen that, whatever the prior knowledge, one experiment is more
informative than another. We shall meet such examples below. In this case it
is possible to compare the two experiments absolutely, without reference to
prior knowledge. Methods of comparing experiments have been suggested by
Bohnenblust, Shapley, and Sherman (described by Blackwell in [2]) and by
Blackwell [2]. These methods of comparison are contrasted with the one pre-
sented here, and it is shown that if one experiment is more informative than
another by Blackwell’s criterion, then it is also true of that used here; the
converse is false.

The Bohnenblust method of comparison is formulated in decision theory
language and involves considerations of losses. These notions are not used here;
the concepts used are perhaps more related to the inference problem than to
the decision problem (see Barnard [1]). In this paper it is suggested that al-
though indisputably one purpose of experimentation is to reach decisions,
another purpose is to gain knowledge about the state of nature (that is, about
the parameters) without having specific actions in mind. The knowledge is
measured by the amount of information, as described above. The following
rule of experimentation is therefore suggested: perform that experiment for
which the expected gain in information is the greatest, and continue experi-
mentation until a preassigned amount of information has been attained. The
consequences of this rule are explored and shown, for example, to lead to se-
quential probability ratio tests. Binomial and normal sampling are also con-
sidered as special cases.

3. The experiment will result in an observation, z, belonging to a space, X.
The space X has a o-field, ®, of subsets, X. For every ¢ belonging to a space
O is defined a probability measure on ®. We shall suppose that as 6 ranges
through © the probability measures on ® are all absolutely continuous with
respect to a fixed measure on ®. This permits us to describe each probability
measure by a probability density function p(z | 6), such that the probability
measure of a subset X is given by [x p(x | 6) dz, where, for simplicity of nota-
tion, we have denoted integration with respect to the dominating measure by
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dz. The ordered quadruple® & = {X, ®, 6, P}, where P is the set of p(z | 6),
characterizes an experiment, & Again, for simplicity in notation, we shall not
distinguish between random variables and the values assumed by them, nor
shall we attempt to be specific in describing the density functions. Thus, p(zx)
will denote the density function of the random variable x; similarly, p(8) will
denote the density function of 6, without any suggestion that the random
variables z and 6 have the same density. These devices avoid such clumsy nota-
tion as p,(y) for the density of the random variable x when x assumes the nu-
merical value y.

We shall suppose that 6 is endowed with a o-field of subsets; usually, © will
be a subset of n-dimensional Euclidean space and the o-field will be the Borel
field. A prior distribution for 6 will be a probability measure on this field, and
again we shall suppose it to be described by a probability density function p(6)
with respect to a measure denoted by d6. Thus, in accord with the notational
conventions described above, we have, for example, -

) v@ = [ p| 0p0) a,

and Bayes’ theorem reads
2 p(0|z) = p(z | 0)p(6)/p(x).

The ranges of integration in the following formulas will always be the whole
space, either X or 0, and will be omitted.

For a prior distribution p(8), the amount of information with respect to df
is defined to be

3) g0 = f p(6) log p(6) do

whenever the integral exists. For any 6 for which p(8) = 0, define p(8) log p(6)
to be zero. A useful alternative notation is

4) 90 = Ey log p(0),

where E, denotes the expectation operator with respect to 6.

The reasons for the introduction of this function have been given by Shannon.
Translated into the language of experimentation, the basic reason is this: Con-
sider the case where O is finite; then the amount of information, I, in a prior
distribution can be measured by how much information it is necessary to pro-
vide before the value of 8 is known. This latter information could be provided
in two stages. For the first, let ©; be a non-empty proper subset of & with P =
fo, p(8) dév5% 0 or 1, and suppose the experimenter is told whether 6 £ 6, or its
complement. This provides amount I, say; the prior distribution being
(P, 1 — P). In the second stage, suppose the experimenter is told the value of

3 Strictly, the quadruple should be a quintuple and should include the dominating
measure; for convenience, it will be omitted.
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0; the information provided is I, or I3, say, according as he knew 8 ¢ 6; or its
complement. (The necessary distributions are p(8)/P and p(6)/(1 — P), re-
spectively.) Then Shannon requires that the information provided in the first
stage and the average amount provided in the second stage add up to the total
information; that is,

=11+P12+(1—'P)13.

This additivity requirement is the fundamental postulate. It finds its general
form in Theorem 2, below. Shannon then shows ([10], Appendix 2) that 7 =
> p(6) log p(6), apart from an arbitary multiplying constant, is the only func-
tion having this property together with a mild continuity property.

We note that the amount of information, so defined, is not invariant under
a change of description of the parameter space. This lack of invariance need
cause no concern, as it will disappear when the expression is used to define the
average information in the experiment. The minus sign introduced by Shannon
in front of the integral is not used. The reason for this is as follows: the maxi-
mum information, in a statistician’s sense, will be obtained when the prob-
ability distribution is concentrated on a single value of 8, and the information
will be reduced as the distribution of 8 “spreads’’; this is exactly the reverse of
the situation faced by a communications engineer, where the concentration on
a single value would allow no choice in his messages. The two scales are there-
fore reversed.

After the experiment has been performed and the value z observed, the
posterior distribution of 6 is p(8 | z), given by (2), and the amount of informa-
tion is

®) 61) = [ p(0]2) log (0| 2) de.
(If p(8 | z) = 0, define the integrand to be zero.)

DerinitioN 1. The amount of information provided by the experiment &,
with prior knowledge p(8), when the observation is z, is

(6) 9(8, p(a), x) = gl(x) -~ 9.
This expression is also not invariant under a change of description of the param-
eter space.

The quantity 9(8, p(6), z) depends on z; some results are more informative
than others. However, since 6 is regarded as a random variable, this quantity
may be averaged with respect to x according to the probability density given
by (1). Hence, we have

DermviTion 2. The average amount of information provided by the experi-
ment §, with prior knowledge p(9), is

() 9(8, p(8)) = E.l9:(zx) — 9ol.
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Alternative forms for 9(8, p(6)) are
@®) E.Es log {p(6 | z)/p(6)}  (from (3) and (5)),
9) E.Ey log {p(x | 6)/p(z)}  (from (2)),
and, in full, if p(x, ) is the joint density for z and 8,

(10) [[ 2. 0) 108 12z, 6)/p(@)p®) dz ds.

The expression (10) shows the symmetry between z and 6 and also exhibits the
fact that 9(8, p(6)) is invariant under a 1 — 1 transformation of the parameter
space, ©. The expression occurs in Shannon’s theory ([10], Section 24) for the
rate of transmission of information along a channel.!

Yet another expression for (8, p(6)) which is useful in calculation is obtained
by introducing the information operator, I, along with the expectation operator,
E. For a density function p(y), we define ‘

ILp(y) = f p(y) log p(y) dy.
It is easy to verify that
(11) 9(&, p(6)) = Eel.p(x | 6) — LEmp(z | 6).

4. The results that we now proceed to establish involve only the use of Bayes’
theorem and the two facts that the logarithm of a product is the sum of the two
logarithms (in the combination of equations (12) and (13) for example) and
that the function z log z is convex (in Theorem 1). We shall often denote the
average information by 9(§) when the particular prior distribution does not
have to be stressed.

TuroreM 1. 9(8) = 0, with equality if, and only if, p(x | 6) does not depend on
0, except possibly in a null set for 6.

This follows immediately from a well-known inequality (see, for example,
Hardy, Littlewood, and P6lya [5], Theorem 205) on writing

5(® = [[ 1z, 6) log 1(z, 0)-p(@)p(®) da ds,

where
f(z, 6) = p(z, 0)/p(z)p(6).

The inequality says that
(] 1 (@000 az an

p(z)p(6) dx df

50) 2 [[ 16, Op(@)p(®) do do-log

4 In the particular case of the ‘‘experiment’’ involved in radar work, the above ideas.
are already contained in a paper by P. M. Woodward [12], and are repeated in [13]. The
author is indebted to M. S. Bartlett for these references.
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with equality if, and only if, f(x, 6) equals a constant, except possibly on a
null set. The logarithm is zero.

The theorem says that, provided the density of z varies with 6, any experi-
ment is informative, on the average. Note that 9(8, p(8), =) is not necessarily
nonnegative. Although the expectation is positive, the experimental result may
reduce the amount of information. This can happen when a “surprising” value
of = occurs; granted the correctness of the experimental technique, the *sur-
prise’’ may result in our being less sure about 6 than before the experiment.

Suppose that the observations z in an experiment & consist of a pair of ob-
servations x;, Z;. That is, everyz ¢X is an ordered pair (x:, zz) with
z; € Xi (¢ = 1, 2). Let ®; be the o-field over X; induced from ® by the trans-
formation z; = z;(z), and let P; be the set of probability densities p(z; | 8) of
the observations z; (¢ = 1, 2). (It is again supposed that the measures are, for
all 4, dominated by a measure so that the probability distributions can be char-
acterized by densities.) Then, &; = {X;, ®;, 0, P;} (¢ = 1, 2) are two experi-
ments and § is said to be the sum of the experiments & and &, written § =
(81, 8&). We shall also have to consider the experiment &(z;) = {X;, &, O,
Py(x1)}, where Py(x;) is the set of densities p(z. | 8, z1).

Consider 9(8;(z1), p(8 | z1)). Since p(8 | 21) is the posterior distribution of 8
after z; has been observed, this quantity is the average information provided
by an observation on x, after & has been performed and z; observed. The aver-
age of it over z; is defined to be the average information provided by &; after
& has been performed. We write it 9(8; | &1), again supressing p(6). A proof along
the lines of that for Theorem 1 establishes that 9(&; | &) = 0, with equality if,
and only if, p(z: | 8, z:) does not involve 6, except possibly on a null set.

THEOREM 2. 9(&1) + 9(8; | &) = 9(8).

We have, using the form (9),

9(&1) = E.,Eylog {p(a1 | 6)/p(z1)}
= E..E.,E,log {p(z: | 6)/p(z1)}.
Also, from the definitions immediately before the statement of the theorem,
9(8:2 | &) = E[9(8(z1), p(6 | 21))]
= E.,E.,Eylog {p(x: | 6, 21)/p(22 | 21)}.
Addition of (12) and (13) gives

BuBoy Fo log{P@ 0 200@ OV _ p g ) {p———(xl’ z | O
1z L96 Og{ p(:l-‘zlxl)p(xl) f 1 Lizy Lig 108 p(xl,x2) j,

(12)

(13)

which is 9(8), and the theorem is proved.

CoROLLARY. If x, is sufficient for x in the Neyman-Fisher sense, then 9(8&) =
4(8).

For if x, is sufficient for z, the factorization theorem shows that p(z. | 6, x1)
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does not involve 6. Hence, by the remark immediately before the statement of
the theorem, 9(8, | &) = 0, and the corollary is established.

The corollary establishes that there is no loss in information if attention is
confined to observation on a sufficient statistic. Conversely, if a statistic is con-
sidered which is not sufficient (in the sense that it does not satisfy the factori-
zation theorem), then information will be lost since 9(8; | &) > 0. Theorem 2
generalizes to a finite number of experiments with common O in an obvious
manner.

Derinimion 3. Two experiments, & and &, with 6; = 6, = O, are inde-
pendent if p(z;, 22| 8) = p(z1| 8)p(x. | 6) for all 8 £ 6.

Of course it by no means follows that if & and & are independent, then z;
and z, are independent; i.e., it is not usually true that p(z:, x;) = p(x:1)p(xs).

If & and &, are independent, the experiments &;(x:) and &, defined above,
are equivalent (in the sense that the four pairs of defining elements are all
equal when we write & = §&,), and we have the result

(14) 9(8 | &) = End(8n, p(6] 21)).
TreEOREM 3. If & and &, are independent
9(& | &) = 9(8),
with equality if, and only if, x, and x. are independent.
From (13) and the independence, we have
9(8) — 9(8:| &) = E.,Eglog {p(x: | 6)/p(22)}
— E.E.,Eolog {p(z: | 6)/p(z: | 21)}
= E.,E.,Eylog {p(z2 | 21)/p(22)}
= E.,E., log {p(x2 | 21)/p(x2)}.
The last expression is identical with (9) when x, , x, are replaced by =, 6, respec-

tively. By Theorem 1 it is therefore nonnegative, and is zero if, and only if,

p(x2 | 11) = p(z2).

Again, the definition and theorem could be generalized to any finite number
of independent experiments. The theorem says that if & and &, are independent
experiments, either one is more informative, on the average, if performed first
than if performed second. In particular, if & = &, the theorem says that an
independent repeat of the same experiment is less informative, on the average,
than the original experiment. This is a property which agrees with the common
belief in the diminishing marginal utility of independent equidistributed ob-
servations.

CoROLLARY. If & and &, are independent expertments, then

9(&) + 9(&) = 9(8),

with equality if, and only if, x1 and x, are independent.
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For

v

9(&) + 9(8&) = 9(&) + 9(&: | &) (by the theorem)
= 4(8) (by Theorem 2).

The corollary is not necessarily true for experiments which are not inde-
pendent. It is easy to construct an example where & or &, separately provide
no information, but jointly they are completely informative in the sense that
the posterior distribution is necessarily concentrated on a single value of 6.

In the case of repetition of identical experiments, more than the result of
Theorem 3 can be said about the reduction of information on repetition. Let
& = & be any experiment and let &, &, --- be independent identical ex-
periments. Let 8 = (&, &) and generally 8™ = (&,, §™™). Let 9(&'™) =
Ja ; the prier distribution can remain unspecified.

THEOREM 4. j,. 15 a concave, increasing function of n.

It will be enough to establish that

0 = juy1 — Jn S jn — Jna.
The first inequality follows from Theorem 2, for by that theorem
Jutr = jn = 9(8upr | E™) Z 0.
The second reads:
9(8ns1 | 8™) = 9(8a | 877).
Since &, = 841, it will be enough to show that
9Enir | 877V, 8) = 9(8asa | 8.

This follows as a slight generalization of Theorem 3, saying that the additional
efpeg'iment &, reduces the average information provided by &.41, even after
g,

Consider the following experiment: With probability A (for all values of 6),
perform experiment &, ; with probability 1 — A (for all values of ), perform
&, where & and &, have ©; = 0, = 0. The observation will consist in the ob-
servation obtained, according to whichever experiment is performed, and the
knowledge of which experiment was performed. Denote this experiment by
A& + (1 — N)&). In mathematical terms (A& + (1 — N)&) =
X =XiuX;,® = ® u &, 6, P}, where P is the set of densities, p(z | 6),
defined as follows: If x ¢ X;, then p(x | 0) = Ap(z, | 0) with z = 21 ; if z ¢ X;,
then p(z | 8) = (1 — M)p(z. | 0) with £ = =, . It is easy to verify that

(15) & + (1 — M)&) = M(&) + (1 — V)9(&).

In this terminology the concavity property established in Theorem 4 says
that

g()‘g(k) + (1 _ x)g(m)) < 9(8(")),
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with » = Ak 4+ (1 — A)m. The last equality ensures that the average “sample
sizes” are the same, and the inequality says that rather than “mixing” two
sample sizes, it is better to take a sample of fixed “size’’ equal to the average
size of the mixture. We discuss the result again below.

THaEOREM 5. For fized &, 9(8, p(8)) is a concave function of p(6).

We have to show that if p,(6) and p.(6) are two prior probability densities
and 0 = A < 1, then

9(& Ap1(6) + (1 — N)p2(8)) — NI(&, pu(8)) — (1 — N)9(8, ps(6)) = 0.
The left-hand side is

[[ 2@ | 90w:® + (1 = Npu(@) 10g (p( | 0/p)} do do
= [ # | 0ypu®) 10 (o0 | 0)/p1(o)) do ds

- (1= ff p(z | 6)pe(6) log {p(x | 6)/pa(x)} dx db,

where pi(z) = [p(z | 6)p(6) d6 (i = 1, 2) and p(z) = Apu(x) + (1 — N)po(2).
This simplifies to give

A [ 2@ | 990 log 19:(@)/p@)) dz o

+ @ = [[ 9] 0po) log (paa)/p(z)} da do.

Performing the integrations with respect to 8, we have

M [ 216@) log (pi@)/p@)} dz + (1= N) [ ) log (pala)/p(@))

and these integrals are positive by the inequality used to establish Theorem 1.
TaEoREM 6. Let &; = {X, ®, 0, P;} (1 = 1, 2). Let § = {X, ®, 6, P}, where
P is the set of densities

p(|6) = Api(z | 8) + (1 — MNpa(z | 6),
with0 < X = 1. Then
(16) 9(8) = M(E) + (1 — N9(E).

(An alternative statement of this theorem reads: For fixed X, ®, 6, and p(6),
9(8) is a convexr function of P.)

The experiment &, described in the statement of the theorem, can be thought
of as being performed as follows: With probability A, a value z is obtained ac-
cording to the density pi(z | 6); with probability 1 — A, z is obtained according
to po(z | 8). The experimenter is informed only of x and not of which event,
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of probability A or 1 — X, took place. Let the experiment &*, on the other hand,
inform him about this event but not about the value of x. Then, clearly, using
the notation developed above,

(8, 8*) = (Xgl + (1 - X)Sz).
Hence,
9(8) + 9(&* | 8) = N(&) + (1 — N)9(&)

and the result follows since 9(8* | &) = 0.
Note that we have a convexity property here and a concavity property in
the previous theorem.

6. The previous development assigns to an experiment & and a prior dis-
tribution p(f) a numerical measure of the average information provided by &.
In particular, this permits a comparison to be made between the amounts of
information provided. by any two experiments &, & , with the same 0, with
respect to a prior distribution. It also allows & and &, to be compared absolutely,
that is, without reference to a prior distribution, in certain cases. To do this
we introduce

DeriniTioN 4. Let &, & be two experiments with 6, = 6, = 0. & is more
informative than &, if

17) 9(81, p(6)) = 9(&, p(6))

for all p(6),’ and strict inequality holds for some p(6). We write & > & or
& < & . If equality holds in (17) for all p(8), we say & and &, are equally in-
formative and write § = & . We write § =< &, or §& = & , to mean either
81 < 8201’81 = 82.

. There exist pairs of experiments for which neither & = &; nor &§ =< &;. The
merits of such experiments can only be judged by reference to a prior distribu-
tion. An example is given in the discussion of the binomial dichotomy after
Theorem 9, below.

THEOREM 7. If &, &, & are three experiments with the same © and if & s
independent of both &, and &, , then & > & implies (81, &) > (82, &).
For any p(6), by Theorem 2

981, &) = 9(&) + 9(&1 | &)
= 5(83) "F Ezsg(gl ) p(o l xa)),
by (14), since & and &; are independent. But & > §&; implies, in particular, that

981, p(6]25)) 2 9(&, p(6 | 7))

8 That is, for all prior distributions not merely for all prior distributions which are
dominated by a fixed measure.
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for any z; . Consequently,
9(81 y 83) 2 9(81) + E,,Q(Sz ) p(a I z3))

= 9(8) + 9(&: | &),

again by (14), since &; and &; are independent. A further application of Theorem
2 establishes the result.

THEOREM 8. If &; (1 = 1, 2, 3, 4) are four experiments with the same © and 7
81 > & y 83 > 84 y &1 78 'mdependent Of &3 y and &2 Of &4 , then (81 , 83) > (82 ) 84)

Let z; be the random variable observed in &;. Then, for any value of 6, z,
is independent of x; and x; of z,. Consider a new set of random variables
(1, Y2, ¥s, ya), where, for any value of 8, y; has the same density as z;, y; is
independent of s, ¥2 of ¥4, and, in addition, y. is independent of y; . Let &
den'ote the experiment in which y; is observed. Clearly, for any p(6), 9(&)=
4(8;) and

9(81, ) = 9(81, &) = 9(8:, &) = 9(&2, 81) = 9(&x, &4).

Both inequalities follow from Theorem 7, and the result is established.

Two other methods of comparing experiments have been introduced. The
first, due to Bohnenblust, Shapley, and Sherman, says that §; is more informa-
tive than &, if every loss function attainable with &, is also attainable with &, .
The second, due to Blackwell, says that &, is sufficient for &, if an experimenter
performing & can, by a random device, obtain a result equivalent to perform-
ing & . (For a precise definition of these two relations, see Blackwell [2].) To
avoid confusion, we shall speak of the relation introduced here as ‘“more in-
formative (S)”’ and the relation in terms of loss as “more informative (B)”.
For the latter, following Blackwell, we write 8 D &, and for &, is sufficient for
8, we write & > 8&. We remark that Theorems 7 and 8 above are the same as
two theorems of Blackwell’s (see [4], p. 332) with > replacing . We now dis-
cuss the connections between these three relations.

TaeoreMm 9. If &, and &, are two experiments with the same ©, and if &, vs suffi-
cient for & , then & is not less informative (S) than & . In other words, & > &
implies & = &, .

Let z; be the random variable observed in &; (z = 1, 2). § > & implies that
there exists a stochastic transformation of z;, say z, such that z; ¢ X, and
z and 2, are identically distributed for each 0 £ 6. Let &; be the experiment in
which z, is observed. Clearly, 9(&) = 9(6:). Consider the experiment & =
(81, 8). Then, z, is sufficient for (z;, x2) in the Neyman-Fisher sense, and,
hence, by the Corollary to Theorem 2, 4(§) = 9(&,). But by Theorem 2, 4(8) =
9(83); consequently, 9(8;) = 9(8,) for all p(f), as required.

Conditions are known under which the relations D and > are equivalent
(see, for example, Blackwell [3]). Under these conditions, it will follow from
Theorem 9 that not less informative (B) implies not less informative (S). That
the converse of these results is not true can be illustrated by an example.
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Consider the case of a binomial dichotomy. Here X contains two elements
(0, 1), © contains two elements with0 < 6, < 6, < land p(z = 1]6:) = 6; =
1 — p(x = 0/86,). This experiment will be denoted by &(6:, 6;). Denote the
prior distribution over (6;, 62) by (A, 1 — ) with0 =< A = 1. It follows immedi-
ately from (11) that

(18) 9861, 62), \] = S(A6 + (1 — N)6y) — AS(6) — (1 — M S(6),
where
S = — 6logd — (1 — Olog (1 — 6).

Consider a fixed experiment &(p1, p:) and compare it with &(6,, 6.) as 6; and
6, vary. To do this it is necessary to consider the right-hand side of (18) as a
function of A for (p1, p.) and for (61, 62): &(p1, p2) = &(61, 62) if, and only if,

9(8(p1, p2), ] = 9[8(61, 62), N]

for all A. It does not seem possible to describe the results analytically, and we
therefore content ourselves with summarizing the results of some computations
in the case py = %, p. = £. The discussion is carried out with reference to Fig.
1, where P is the point (3, 2). It is known (see [2]) that the points (6;, 62) in the
areas with horizontal hatching correspond to experiments which can be com-
pared with &(p:, p:) by either the relation D or >, which are, in this case,
identical. For points in the triangular area, §(6:, 6;) C &(p1, p2); for points in
the quadrilateral, &(6;, 6;) D &(p:1, p2); the remaining experiments are not
comparable with &(p;, p:). Theorem 9 implies that the relation D may be re-
placed by >, but computation shows that the points in the areas with vertical
hatching correspond to additional experiments which can be compared with
&(p1, p2) by the relation >. Those adjacent to the triangular area have
8(6,, 6,) < &(p1, p2) and those adjacent to the quadrilateral have (6, , 6;) >
&(p1, p2). The points in the unhatched areas correspond to experiments which
cannot be compared by the relation >. The points in the area of vertical hatch-
ing show that the converse of Theorem 9 is false.

The smallness of the unhatched region is a satisfactory feature of the com-
parison by the relation >, for ideally all experiments would be comparable.

A

' P>
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The following considerations support the view that the relation > holds in
substantially more cases than does the relation O. Blackwell [2] remarks that
the binomial trichotomy &, = &(0, %, 1), in an obvious extension of the previous
notation, is not more informative than & = &(0, %, ). We shall show that
81 > 82 .

Let p(6) = Ap1(8) + (1 — N)p(8) and let p(d) = (p, 0, ¢) and
p2(0) = (p, ¢, 0). Then p(8) = (p, g(1 — \), g)), a general prior distribution.
From considerations of binomial dichotomies we have 9(8; , p2(6)) = (82, p2(6))
and 9(&:, p1(9)) = 9(8:2, pr(0)). From Theorem 5

9(&1, p(6)) 2 (&1, pa(0)) + (1 — N)9(&1, p2(6))

2 N(&, ;(8) + (1 — N)9(8&:, p(6))
A9 (&, p(6)) + (1 — N)9(8&:, p(8))
9(&, p(6)).

Since p(6) is arbitrary and the inequality is clearly strict for some p(6), the
result is established.

Another difference between the two methods of comparison is provided by
our Theorem 4. We deduced a result which we can now express as

n&® + (1 — &™) = 8™,

where n = Ak 4+ (1 — N)m. W. H. Kruskal has pointed out that the same result
is not necessarily true with < replaced by C. His example invelves taking &
to be a normal dichotomy, i.e., ® = (6;, 6,), X is the real line, and

p(x|6) = (2r) ™ exp [—3(x — 6)7].

Let di(z = 1, 2) be two decisions, with d; correct when 6 = 0;. Let p;;.(3) be
the probability of saying d; when 6 = 8, on the evidence of the experiment §™,
using the decision function 8. The relation D can be expressed in terms of p12.(8)
and pu.(8), and for some values of ¢, the function

infs { pmn(ﬁ) + szln(a)}

is not concave. Thus it may, to quote an extreme case, produce a smaller loss
to do no experimentation with probability (1 — \) and to perform &* with
probability A than to do 6™ with n = k.

We conclude this section by discussing another example of Blackwell’s (see [2])
which demonstrates the techniques of the present theory. Each member of a
large population of individuals has or has not each of two characteristics H, S.
The proportioﬁs, h and s, of individuals with characteristics H, S are known.
The proportion w of individuals having both characteristics is not known. Let
&(H) denote the experiment in which a random individual from the pepulation
of individuals having characteristic H is observed; use &(~H), &(S), and &(~=S)
similarly, where ~H denotes the absence of the characteristic H. Suppose, with-

I
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out loss of generality, that the characteristics are so named that 0 S h = s <
1—s=1—h = 1. We proceed to show that &(H) is not less informative (S)
than any of the other three experiments; that is, the best experiment is that in
which individuals with the rarest characteristic are observed. Blackwell estab-
lished the same result for not less informative (B) when w is known to be either
hs or some specific alternative 8 5 hs. Our result holds for any prior distribu-
tion of w.

Each of the four experiments is binomial with the following probabilities at-
tached:

&H): pr(S) = w/h =4,

1—h— 1—h— h
8(~H): pr(~8) = .1_Z+w= l—hs+1-—-ho'

&(S): pr(H) = w/s = hd/s,

—h—s+w_1—h—s h
1 —s T 1-—3s +1—s

&(~8): pr(~H) = . 6,

where 8 = w/h. The permissible range for 6 is 0 < 6 = 1. Consider an arbi-
trary prior distribution for 6.

Now each of the four experiments is binomial with probability of the form
A+ (1 —A)f, withO = A = 1,0 £ ¢ = 1. Alternatively, by introducing a
random variable which is 1 or 0 according as the event, indicated above, does
or does not occur, the probability density is

p(1]6) =+ (1 — )6
= ap1(1]60) + (1 — Mpe(1]6),

where p1(1]60) = ¢, po(1|8) = 6. Let &, & be experiments with P; = {p,},
P, = {p.}. Then if & is any of the four experiments considered above, we have
by Theorem 6

9(8) = M(&) + (1 — N9(8&) = (1 —N)9(&;) = 9(&y),

since 9(&;) = 0 as p; does not depend on 6. But §(H) has A = 0, so that & = &y .
This establishes the result, since the prior distribution is arbitrary.

6. Since Wald’s introduction of decision theory, many statisticians, the pres-
ent author included, have identified the theory with statistical theory and have
argued that modern statistics 7s decision theory. Some statisticians, for exam-
ple, Barnard [1] and Fisher [15], have not supported this view; they have con-
tended, for example, that the purpose of a significance test is different from the
purpose of a Wald decision problem with two decisions, reject or accept. It is
therefore contended that different mathematical models are needed for the two
purposes. This latter view is supported by the fact that significance levels do
not occur in decision theory. If the purpose of modern statistics is not to come
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to decisions, we may ask what is its purpose? Without wishing to take sides in
the issue we propose in this section of the paper to investigate some elementary
consequences of the attitude that the purpose of some statistical experimenta-
tion is to gain and measure information about the state of nature.

The first consequence of this attitude is that the statistician, faced with a
choice of one among several experiments that he might perform, will choose that
one for which the average amount of information is the greatest. The choice
will, in general, depend on his prior knowledge, but it may happen that the
experiments will be absolutely comparable by the methods of Section 5 and the
prior knowledge will be irrelevant. Examples have already been given, but there
is one further case worth considering. Let §(s) denote the experiment in which
X and O are the real lines and

p(z|8) = (V2r o) "exp [—(x — 6)*/27,

where ¢ > 0. Here x is normally distributed about 6 with known variance o”.
We shall show that &(o;) > 8(oz) if 01 < o2 ; that is, the experiment with
smaller variance is the more informative (8). To prove the result, we show
that &(e;) > &(o2) and then apply Theorem 9, with the additional remark that
there obviously exists a p(8) such that 9(8(e1), p(8)) > 9(&(o2), p(6)). Let
z; be the random variable observed in &(s;). Then

(19) T = 1 + u,

(where u is a random variable, independent of z;, and having a normal dis-
tribution with zero mean and variance o3 — o1) has, for each 6, the same dis-
tribution as x, . Equation (19) is thus a stochastic transformation from z; to x»
and hence &(oy) > &(o2).

A measure of the information can only be provided by assuming a particular
form for p(6). Suppose that

p(0) = (V2rx1) " exp [—(0 — w)*/27] = p.

for some ux and = > 0. It is easy to establish that p(z) is a normal density with
mean p and variance ¢ 4+ 7. Also,

Ip(0) = —log (2me)"r.
Consequently, by equation (11), we have
9(8(a), pr) = } log (1 + /).

This result provides an illustration of the truth of Theorem 4. If we use the
notation of that theorem, with § = &(c¢), we have that

jn = 3 log (1 + ns’/d?),

which can be contrasted with the usual measure n/s". Notice that j. increases
without limit in this situation.
Consider now the k-dimensional extension of these results. Let X and © be
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k-dimensional Euclidean spaces and let * = {x;, ---, zx} have a multivariate
normal density with mean 6 = {6;, -- -, 6;} and dispersion matrix C, which is
known. Let 6 have a prior density, p4 , which is multivariate normal with mean
u and dispersion matrix A. Denote this experiment by &§(C); then, calculation
along the same lines as in the univariate case gives

9(8(C), pa) = ¥ 1og {|4 + C| /|C]}

where |C| is the determinant of C. Clearly, even for this limited class of prior
distributions, the two experiments &§(C;) and &(C,) will not be absolutely com-
parable since their relative average informations depend critically on 4. How-
ever, in some circumstances there is a possible simplification. Generally, we
have that

9(&(C), pa) > 9(5(03), Pa)
if .
|A + Cll |Cz| > IA -+ Cz| ICll

or .
14+ A7'Cy| |Co| > |1 4+ A7'C |Cy].

If the elements of A7'C; are small in comparison with the unit matrix, this is

approximately
|Ce| > |Cy] .

Hence, an approximate basis of comparison in this case, which corresponds to
considerable ignorance about 6, is through the determinant of the dispersion
matrix. The use of the determinant criterion has been used by Wald [11] in a
slightly different context.

A second consequence of the view that one purpose of statistical experimenta-
tion is to gain information will be that the statistician will stop experimentation
when he has enough information. Such a sequential method does not involve
considerations of risks or cost of experimentation, but does involve a statement
of prior knowledge. We consider next the sequential methods that this idea
results in, for some special cases. In each case we shall consider a sequence
&, &, --- of independent, identical experiments which are to be performed
until enough information about 6 has been obtained. It is therefore a question
of how much repetition of a given experiment should be performed.

We first take the dichotomy, with © = (8, 62). X, ®, and P are quite general.
Let 6 be some preassigned number. Then experimentation will proceed; after n

repetitions we shall have observations (21, %2, -+ , #,) and the amount of in-
formation will be

(20) Zi pn(oi) IOg pn(oi)>

where

pn(oi) = 27(0- l X1, **°, x")’
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the posterior distribution of 6. According to the idea introduced above, experi-
mentation will continue until (20) is not less than §. It is supposed that & is
chosen so that this sequential scheme will terminate with probability one; in
this case § must be negative. Since (20) is a convex function of p,(61) = 1 — p.(6s),
the scheme corresponds to continuing sampling if, and only if,

(21) 1 — A <p(th) A4,
where
AlogA + (1 —A)log(1 — A) =4.

Expression (21) may be written in terms of the ratio of posterior probabilities
for 6, and 6. , and by use of Bayes’ theorem, it may be put in the form

l—Ap(02)<p(x1,---,xn|01)< A p6)
A p6) p,c,xa|0) 1 — Ap6)

It is now apparent that the sampling scheme is equivalent to a scheme used in a
Wald sequential probability ratio test of 6; against 6, .

The generalization to the case where © has n elements will be sufficiently
illustrated by the trichotomy n = 3. The argument is as with the dichotomy
up to the sentence before that in which (21) appears. Now the posterior dis-
tribution p,(6;) may be represented by a point in an equilateral triangle of unit
altitude, the distances of the point from the sides being p.(6:)(¢ = 1, 2, 3).
Since (20) is again a convex function of the distribution, it follows that for suf-
ficiently large values of 8, but § < 0, the regions of values of p,(6;) for which
sampling will cease will be three congruent convex regions at the three corners
of the triangle. The calculation of the exact shapes of the regions would be a
simple matter. It is interesting to note that regions of similar convex structure
are obtained for termination in an optimum sequential scheme for deciding be-
tween three simple hypotheses with given loss function and prior distribution
(see, for example, Blackwell and Girshick [4], p. 262).

We now leave the case where O is finite and suppose © to be an interval on
the real line. It is now necessary to remark that as Shannon’s measure of infor-
mation is not invariant under a change of description of the parameter space,
a different sequential scheme will be obtained if the description is changed. This
unpleasant feature need not bother us unduly since sequential schemes based,
for example, on the variance will have a similar feature. A sampling scheme in
which sampling is continued until the variance of the estimator of 6 is less than
some prescribed number will differ from one designed for the variance of the
estimator of f(6). It is possible to find invariant sequential schemes by the device
of sampling until the average amount of information to be gained by taking a
further sample falls below a prescribed limit. It can then be argued that the
further sample is not worth taking and sampling can therefore cease. We shall
not investigate such schemes here; they will be invariant since the expression
for the average amount of information is invariant.
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First consider repetitions of the normal experiment &(c), above, with prior
distribution p. . After n observations with mean &, which is a sufficient statistic,
it is easy to verify that the posterior distribution of 6 is normal with mean
(n7'% + o’u) / (n7* + o°) and variance o*+* / (n7* + ¢%). The posterior informa-
tion will therefore be —% log 2wea®s’ / (nr* + o*) and sampling will continue as
long as this quantity is less than §, or, equivalently, until
2red’t — e 2?

,rze—-%

v

n

Thus the optimum sequential scheme is of fixed sample size, given by the above
expression. For large 7*, corresponding to small prior knowledge, the fixed sample
size is approximately n = Koz,' where K = 2me®*. Thus the scheme is equiva-
lent to sampling until the variance of the sample mean is sufficiently small.

As a final example, consider the case of repeated binomial trials. In the ex-
periment to be considered X = (0, 1), © is the unit interval 0 < 6 < 1, and
p(1]|68) = 6. The situation where the prior distribution is concentrated on a
finite number of points is covered by the results above. We therefore consider
densities over the whole interval of 6 and, to simplify the calculations, confine
attention to the family

(22) Pas(8) = 6°7'(1 — 6)"'T'(a + b) / T(a)T'(b),

with a and b positive. This family of densities has the property that if the prior
distribution is pu(6), then the posterior distribution after a single binomial trial
has been performed is pat1,5(6) or pap41(6), according as z = 1 or 0, respectively

(a fact which the reader can easily verify). Simple calculation shows that
(23) Ipay(6) = In T(a + b) / T(@)T'(®) + (a — 1)[¥(a) — ¥(a + b)]
+ (b — D[¥(O) — ¥(a + b)),

where
¥(z) = dIn I'(z) / dax.

This complicated expression can be simplified for large values of both a and b
by use of the asymptotic formulas
InT(x)~in2r —z+ (z — 3 Inz

and '
¥(x) ~lnz — 1/2z.
We obtain

Ipas(0) ~ 3 1n (@ + b)°/ab — 4ln 27 — 1.

It follows that the curve in the plane of a and b along which Ispa(8) is constant
is given approximately, for large values of a and b, by the curve

(a + b = rab
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for some constant A. The general form of this curve is shown in Fig. 2 by a con-
tinuous line for a, b > 10; the broken extension shows the general form of the
curve outside this range, as found by numerical computation.

Suppose the prior distribution has @ = ao, b = by . Then, after a sample of
size n has produced r values of t = 1 and n — r of £ = 0, the posterior dis-
tribution will have @ = ao + 7, b = by + n — r. The experimentation can be
represented in the (a, b)-plane by starting at P = (ao, be) and forming a path
by moving one unit along the a-axis for each value £ = 1 and one unit along
the b-axis for, each value x = 0. Sampling will cease when the path intersects
the curve corresponding to the amount of information required. If prior knowl-
edge suggests that 6 is small, then presumably one would take ao to be small
and b, large, in comparison (for example, the point P in the figure). Ignorance
about 6 presumably“corresponds to ap = by = 1, or, at least a point with small
ao and by .

We conclude by making a few comments on the boundary curve shown in
Fig. 2, based on the assumption that ap = by = 1. The most prominent feature
is perhaps the sharp decrease in the critical value of b as a approaches one—the
curve AB in the figure. Repetitions of one value of z, in this case x = 0, result
in a greater accumulation of information than a mixture of both values. To cite
a numerical instance: 6 occurrences of the value £ = 0 are about as informative
as 11 occurrences of £ = 0 with one occurrence of x = 1, or 14 of £ = 0 with
two of x = 1. (The sample sizes are 6, 12, and 16, respectively.) This agrees
with the “common-sense” feeling adduced by the consideration that if the same
thing continually happens, say the sun rises each morning, then we are much
better informed than we would be if there was known to be even a single non-
occurrence. In the contrary case, when 6 is about %, the part CD of the curve is
relevant, and is approximated to by the fixed sample size scheme with boundary
a + b = constant. The part BC of the curve can also be approximated to by
the straight-line boundary b = constant. This would be appropriate if § were
about % (but not too small so that the sharp curve AB was relevant) and would
correspond to sampling until b values of £ = 0 had been observed. If z = 1
corresponds to a ‘“‘defective,” this is the same as sampling, when defectives are
rare, until the number of nondefectives has reached a preassigned number, and
may be contrasted with inverse binomial sampling where the situation is similar
but the rule is in terms of defectives.
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