STOCHASTIC APPROXIMATION!. 2

By Cyrus DERMAN

Columbia Unaversity

1. Introduction. In certain applications, as in bioassay, sensitivity testing, or
fatigue trials, the statistician is often interested in estimating a given quantile of
a distribution function on the basis of data which is of the zero-one type. For
example, suppose F(x) denotes the probability that a metallic test specimen will
fracture if subjected to z cycles in a fatigue trial. Then a specimen, when tested
in such a way, represents an observation which takes on the value one or zero
depending on whether or not it fractures. It is of interest to estimate that number
of cycles z such that, for a given «, F(x) = a. The techniques of possible use in
this connection, such as probit analysis [8] and the “up and down’” method of
Dixon and Mood [6], depend to a great extent on parametric assumptions con-
cerning the distribution function F(x). Robbins and Monro [13] considered a
problem of which the above problem, with or without parametric assumptions,
is a special case. Suppose for every real value z, the random variable Y(z),
denoting the value of a response to an experiment carried out at a controlled
level z, has the unknown distribution function H(y | ) and regression func-
tion M(z) = [Z,y dH(y|z). Let a be any given real number. Robbins and
Monro considered the problem of estimating the root of the equation M (z) = «,
assuming the existence of a unique root. If Y(z) = 1 or 0 with probabilities
F(z) and 1 — F(z) respectively, where F(x) is a distribution function and
0 £ o £ 1, then M(z) = F(z), and we have the above special case.

The problem of estimating a root of a given regression function has its counter-
part in the literature of the more classical mathematics. Newton’s method of
approximation is, perhaps, the best-known iterative procedure used for such a
problem when no random element is present. However, even if Y (z) = M(x)
with probability one—i.e., if no randomness exists—Newton’s method is not
applicable; for Newton’s method and other classical procedures depend on
knowing the functional form of M (xz), whereas, here, such knowledge is not
assumed.

Because of the nonparametric nature of the problem, a method of approach
not based on the usual curve-fitting techniques, is clearly necessary. As a
solution, Robbins and Monro put forward the following iterative scheme. Let
fa,} (n = 1) be a fixed sequence of positive constants such that

(11) Zan= @, Zai< 0.,

n=1 na=1
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The sequence a, = 1/n, for example, satisfies (1.1). Let x; , the level of the first
experiment, be arbitrary. Succeeding levels are defined recursively by

(12) T4l = Tp + an(a - y")7

where y, denotes the response at level z,—a random variable dependent only on
z, and having the distribution function H(y | z.). Thus at each stage of experi-
mentation, a new level is chosen, based upon the deviation of the previous
response from « and on the number of experiments already performed.

Since the proposal of their scheme, considerable attention has been focused in
this direction. Some of this attention has been directed towards establishing
conditions under which the Robbins-Monro procedure is reasonable; some has
been directed towards treating similar problems with different but analogous
schemes; and some has been directed towards providing a more general theory of
stochastic approximation. This paper is an exposition of work done along these
lines.

2. The Robbins-Monro Process. Let 6 be the root of the equation M (z) = «a.
Robbins and Monro [13] proved that z, defined by (1.2) converges in the mean
to 0, i.e., limy.. E(X, —6)" = 0, in two separate cases. In one case the function
M(z) is discontinuous at § with | M(z) — « | being bounded away from zero for
all z # 6. (In fact, M(6) need not equal a.) In the other case, M(x) is nonde-
creasing, M () = «, and M’(6) > 0. In both cases the rather strong condition
that Y (z) be bounded with probability one for all z was imposed. However, it
should be remarked that for the purpose of estimating a quantile with zero-one
data, the condition is not restrictive.

Wolfowitz [16] was the next to take up the problem. He showed that . con-
verges to 6 in probability under weaker conditions. His most significant improve-
ment was to replace the boundedness condition of Robbins and Monro with the
condition that M (z) and o> = [2 (y — M (z))’ dH(y | x) be bounded functions
of .

The following conditions, which are weaker than both the Robbins-Monro and
Wolfowitz conditions, were assumed by Blum [1].

(2.1) | M()| £ c+d]|z| for some ¢, d = 0,
(2.2) nEd < ® for all z,
(2.3) M) < a(z < 0), M) > a(z > 0),

(2.4) slggir_llegg (x) — for every &, 8, > 0.

Under these assumptions Blum was able to show that P(lim r.e 2z, = 8) = 1.
That this is true, with no stronger assumption than (2.4), is somewhat surprising.
For (2.4) allows the possibility that M (z) — « as | z | — «, and in such a case
one would expect that there might be positive probability of |z, | converging
to .

While the proofs of Robbins and Monro and of Wolfowitz used arguments
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rather special to the process under consideration, Blum’s method related to other
known results. More specifically, it can be shown using Martingale theory or,
more directly, Kolmogorov’s inequality that because of (1.1) and (2.2),
> raai(y; — M(x;)) converges with probability one. (See Logve [12], p. 387.)
Consequently

n n

Top1 — JZ; aile — M(z) = 1 — ]Zl ai(y; — M(=y))
converges with probability one. Imposing the conditions of (2.1) and (2.3), Blum
was able to show that x, converges with probability one to a random variable
W which is finite with probability one. Then (2.4) was enough of a further
assumption to allow him to prove that W = § with probability one.

Recently, Dvoretzky [7] has shown that under Blum’s conditions, z. also con-
verges in the mean to 8. Dvoretzky’s work will be discussed below.

While the results of Blum and Dvoretzky show that under wide conditions the
Robbins-Monro process converges to 8 both in mean square and with probability
one, it is of interest, particularly for statistical purposes, to obtain sharper con-
vergence theorems. To this end, Chung [4] considered two cases. In his first
(bounded) case he assumed that

(2.5) M@ix) =a+ alz — 0 + o(jz—0]) 0 < ay < »),

(2.6) | i?lf . | M) — a| = Ko@) >0 for every & > 0,
z=0|>

2.7 P(|Y(@E — |2 Ky < o) =1 for all z,

(2.8) lim o = a5 > 0.

Under the conditions of (2.5), (2.6), (2.7), and (2.8), Chung showed that if
an = 1/(n'™*), where 1/[2(1 + K4)] < € < % (K, being a constant arising in his
analysis), then n“"”*(z, — 0) tends in distribution to the normal distribution
with mean 0 and variance o3/(2e;). In his second (quasi-linear) case, he replaced
(2.7) with

(2.9) Klz—0|2|M@x) —a|=K|z—0| K>0,K' > «,
and
(210) [ly-M@riay D ske) <o p=12-,

and showed that if a, = ¢/n, ¢ > 1/(2K), then n* (z, — 6) tends in distribution
to the normal distribution with mean 0 and variance (c5¢")/(2auc® — 1). Both
results were proved by showing the proper convergence of moments. In earlier
papers, Kallianpur [10] and Schmetterer [14] and [15] obtained certain bounds
for E(z, — 6)°. For the most part, however, their results are contained in those of
Chung.

The question arises as to whether other limiting distributions might exist.
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Chung also showed that all stable laws are possible limiting distributions; and
furthermore, no limiting distribution need necessarily exist.

For purposes of application, Chung’s results still left something to be desired.
Kiefer, who contributed largely to the last section of [4], remarked that, for the
quasi-linear case, if @, = ¢/n, with ¢ = 1/a; , the Robbins-Monro estimate of 8
is, under certain regularity conditions, asymptotically minimax if the loss func-
tion of an estimate d is |6 — d |, r = 0. That this is true follows with slight
modification from results obtained by Wolfowitz [17] on minimax estimation
of the mean of a normal distribution with known variance. However, the con-
ditions of the quasi-linear case are not satisfied if A/ (x) is a distribution function—
as is the case in the quantal response problem. Here the bounded case is ap-
plicable, but the estimate based on a, = 1/n'"¢ has asymptotic efficiency zero.
Hodges and Lehman [9], using an idea attributed to Stein, bridged the gap
between the quasilinear case and the bounded case, proving that, in the bounded
case, n} (z, — ) also converges in distribution to the normal distribution with
mean 0 and variance (s5¢’)/(200¢" — 1) if @, = ¢/n, ¢ > 1/(2K”"), where K" =
infiz.p<s | M(x) — «|/|x — 6| (A being any positive number such that
K” > 0). It is not known whether the moments of n! (x, — 6) converge to the
moments of the limiting distribution. Their method was to show, using Blum’s
probability one convergence theorem, that the asymptotic distribution of z,
depends only on those values of M (x) defined in the neighborhood of z = 6.
Within any finite interval, a function M (x) satisfying the conditions of the
bounded case will also satisfy the conditions of the quasi-linear case, so that as
far as the asymptotic distributions are concerned, the two cases are the same.

Coming back to the quasi-linear case, it has been remarked that for a, =
1/(cqn) and loss function | § — d |, the Robbins-Monro procedure is asympto-
tically minimax over all possible procedures. Dvoretzky [7] has shown that if it
is known that |a; — 0] < € £ [(2))/K(K' — K)]}, where o* is defined by
(2.2), then the choice of a, = (KC*)/(c" + nK'C") yields estimates such that

2 a'C"
(2.11) E(x, — 0 < FE = DR n
and if any other coefficients are used, there exists an z; and a function 3 (z)
satisfying the quasi-linear conditions such that (2.11) does not hold. Except for
the case K = a1, Dvoretzky’s coefficients lead to estimates having asymptotic
variance larger than that obtained by letting a, = 1/(am). This loss in asymp-
totic efficiency is, of course, the price paid for small-sample optimality.

Lehmann and Hodges raised the questions as to how much agreement exists
between asymptotic and small-sample theory and how ¢, if one uses the co-
efficients a, = ¢/n, is to be chosen if a; = M’(#) is unknown. Since the behavior
of the variance of the estimate is unknown for ¢ < 1/(2K), they remarked that
one would be tempted, if an a priori guess is to be made, to overestimate c.
They would also overestimate ¢ on the grounds that (c3c’)/(2aic — 1), the
asymptotic variance of n%(xn — ), increases more slowly for increasing ¢ >

1

I
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{/a1 than for decreasing ¢ < 1/a; . In order to gain more insight concerning the
proper choice of n and ¢, they considered the special case of a linear M(z) and
constant o . Here it is possible to compute exact variances for all n and to study
the effect of varying ¢ on the exact variance. They found, for this special case,
rather close agreement between asymptotic and small-sample theory for n = 20
and ¢ > 1/a; . However, for ¢ < 1/a1, it appears that the rate of approach of the
small-sample variance to the asymptotic variance is much slower, and thus the
danger due to underestimating c is, perhaps, not as great as the asymptotic
theory suggests.

3. The Kiefer-Wolfowitz Process. Kiefer and Wolfowitz [11] considered the
problem of estimating the value of £ = 8 such that M () is maximum, assuming
the existence of a unique maximum. They suggested the following scheme. Let
{a.} and {c.} be sequences of positive numbers such that

3.1) cn — 0, > an = ©, D Gnen < o, Y aherl < .
Nl n=sl

For example, a, = 1/n,¢, = 1 /n* are such sequences. Let z; be arbitrary. Then
define recursively

(3.2) Tupl = Tn + anCZl(yzn — Yon-1),

where ys,_1 and 7. are independent random variables with respective distribu-
tions H(y | z» — ¢.) and H(y | €» + ¢a). They proved under certain regularity
conditions that z, converges in probability to 8. Using the same method as with
the Robbins-Monro process, Blum [1], under weaker conditions, showed that the
process converges with probability one. It also turns out that the condition
Y @at. < ® is unnecessary. The conditions of Blum and of Kiefer and Wolfowitz
are of such a nature that functions like M (z) = e_’z, —z” are ruled out. Derman
[5] considered functions which might be called ‘“quasi-parabolic,” analogous to
Chung’s quasi-linear functions—i.e., functions whose difference quotients lie
between two straight lines with positive slopes. Functions like —2” satisfy these
conditions. It was shown in such cases that z, converges in the mean to 8 and in
more restrictive cases, where M (z) is locally parabolic at 6, there is, with proper
normalization, convergence to the normal distribution. Burkholder [3] also ob-
tained results pertaining to asymptotic normality.

The weakest set of conditions for convergence of the Kiefer-Wolfowitz process
which allow both ¢ and —a* were given by both Burkholder and Dvoretzky.
Burkholder proved probability one convergence and Dvoretzky proved both
convergence with probability one and in the mean square. These conditions in
Dvoretzky’s form are as follows:

B3) |Mx+ 1) — Mkx)|< A|z|+ B < « for all z and some A, B,

(3.4) sup DM(z) < 0, inf DM(x) > 0 fork=1,2---,
1/k<z—0<k 1/ k<<0—~2<lk

(3.5) o: < o < o,
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where DM (z) and D(x) denote the upper and lower derivates of M (z) at z and
or is as in (2.2).

An undesirable feature of the Kiefer-Wolfowitz process is that two observa-
tions must be taken at each stage of experimentation. This of course raises the
question of whether there exists a procedure having desirable convergence
properties which requires only one observation at each stage.® No such procedure
has yet been suggested. However, the approach taken by Dvoretzky appears as
if it might allow results in this direction. In the cases that Derman considered, it
also turns out that the Kiefer-Wolfowitz procedure yields estimates which have
zero asymptotic efficiency—i.e., if z, is any estimate based on one set of coef-
ficients {a.} and {c.}, there exists another estimate z, based on coefficients
{an} and {c,} such that lim,,, E(z, — 0)*/E(z, — 6)® = 0. Thus a better pro-
cedure seems desirable from this point of view. It is of some interest to note
that for cases where M(z) is symmetric about 8, the Robbins-Monro proce-
dure may be used. More explicitly, let ¢ be a small positive number and let
M) = M(x + ¢) — M(z — ¢) and y» = Yan — Yon_1 , Where Yoo and yan_y are
observations at (z + ¢€) and (z — ) respectively. Then, since M (z) is a monotone
function of z, and 9 is the value of z such that M(z) = « = 0, the Robbins-
Monro procedure a1 = %, — @.ys is applicable. Burkholder has pursued this
idea further into cases where M (z) is not necessarily symmetric. In such cases, if
x, converges, it converges to a constant which will, in general, differ from 6.

4. Other Procedures. Blum [2] has considered multidimensional analogues to
the above problems. Let Y(z) be a k-dimensional random vector with joint dis-
tribution function H(y |x), where z is also a k-dimensional vector, and let
M (z) denote the expectation of Y(x), where by this we mean that the #th com-
ponent of M (z) is the expectation of the 7th component of ¥ (x). Conditions were
found to ensure that, for a given vector @, a multidimensional version of the
Robbins-Monro procedure converges with probability 1 to a vector x = 6,
where M(6) = a. Suppose Y (z) is a random variable which is dependent on z, a
k-dimensional vector, and has expectation M (x), a function of 2 assumed to have
a unique maximum. Conditions were also found such that a generalization of the
Kiefer-Wolfowitz procedure (k¢ 4+ 1 observations at each stage) would yield
estimates converging to the vector + = 6, where M(6) is maximum. Martingale
theory was employed in the convergence proofs.

sturning to one dimension, Burkholder [3] investigated a process slightly
more general than either the Robbins-Monro or the Kiefer-Wolfowitz process.
Burkholder’s process is of the form

4.1) Topt = Tn + Gn2n,

where {a.} is a sequence of positive numbers and z, is a random variable with
distribution function H,(z | ,)—i.e. the distribution functions and therefore the
regression functions depend on n. For example, M.(z) = (1/c,)(M(x + ¢.) —
M(z — cn)) in the Kiefer-Wolfowitz procedure is a function of n. Using methods

3 As a matter of fact, this was the original problem concerning the maximum of a regres-
sion function posed by H. Robbins.
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of Blum, Chung, and Lehmann and Hodges, Burkholder was able to prove
various convergence theorems concerning his process. His results carry over to
situations where z, converges to a nonconstant random variable—this occurring
when there is no uniqueness of, say, the root of M(x) = a or the'maximum of
M(z). As a special case of his process, he exhibited a procedure which converges
to the point of inflection of a function; e.g., estimating the maximum of a density
function with zero-one data is a particular application of such a procedure.
Another application permitted by his more general procedure is that of esti-
mating, by taking additional observations at each stage, unknown constants of
interest such as ; and o} , arising in Section 2.

6. A more general approach to stochastic approximation. A more general
approach taken by Dvoretzky [7], viewing a stochastic approximation procedure
as a convergent deterministic procedure with a superimposed random element,
has proved to be enlightening. For example, suppose T.(z1, -+, Z,) is any
transformation of an m-dimensional Euclidean space &, into the real numbers
such that for some z = 6,

5.1) |Tulxr, -+, 2) — 0| = Fu|xz. — 6| forall (z,, - ,s) €8a,
where F, is a sequence of positive numbers satisfying
(52) I1F.=o.
Naml

Suppose
(5.3) Tpyp1 = Tn(xl y T )x") + Y""
where Y, (n = 1, - -+ ) are random variables such that E (Y, |z, -+ ,2,) =0
and D ai0a = 2w EY%: < . Then, putting V2 = E (z, — 6)’ and using
(5.1), we have
(5.4) Vin S FoVa + a0
Lot bao = J[F0s1 F: . On iterating (5.4) we get

n—1
(5.5) Vst £ 25 0ibaei + 0% + Viba.

1=

For every fixed v, b,—, — 0 as n — o« by (5.2); and since D w10 < ®, it
follows, assuming Vi < o, that the right side of (5.5), and consequently the
left, tends to 0 as n — «. Thus any stochastic approximation procedure given
by (5.3), with T, satisfying (5.1) and (5.2) and 2, chosen such that Vi < o,
yields an estimate which converges in the mean to 6. For the Robbins-Monro
scheme, Ty = z, + an(a0 — M(x,)) and Y, = a,(M(x») — y»). Under certain
restrictive conditions, (5.1) and (5.2) hold. However, in order that this approach
be more generally applicable, it is necessary to weaken condition (5.1). For
example, such a weakening is that for sequences of non-negative real numbers
n, Bn, and v, , satisfying liMp.e o = 0, D aeiBn < ©, D aei¥n = ®,

(56) lTn(x,"',xn)_o‘émax(an;(l""ﬁn)‘xn—'0‘—"Yn)',
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A further weakening permits e, 8, v» to depend on z,, - - -, x, . Under such
conditions Dvoretzky was able to prove that the process (5.3) converges to 8 in
the mean and with probability one. These conditions are weak enough to apply to
the Robbins-Monro and Kiefer-Wolfowitz processes, yielding results mentioned
above.

One might expect, then, that whenever a convergent deterministic iteration
procedure converges, its stochastic counterpart given by (5.3) will also converge.
Dvoretzky constructed a counterexample to show that this is not the case. Thus
the conditions E(Y, |z, -, 2.) = 0 and > w3 EY% < = are not strong
enough to allow conditions like (5.6) to be removed.

A further advantage of this general approach is that the convergence theorems
hold, with appropriate changes, if « is an element of a normed linear space. Such
generality is useful since, in many applications, x will not be a one-dimensional
variable. For example, the multidimensional cases treated by Blum can be con-
sidered from this point of view.
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