We shall now render the introductory conditions (A)-(B) exact. First, we write

(A)
$$\sigma(\zeta) \leq \epsilon \cdot \sigma(x_i), \qquad i = 1, \dots, h,$$

where $\epsilon \geq 0$. Then if ϵ is small, the disturbance ζ is small in the sense that its standard deviation is small relative to the standard deviations of the explanatory variables. To give condition (B) a convenient form we observe that for given r_1, \dots, r_h there is a point (r_1^*, \dots, r_h^*) on the boundary of the ellipsoid (4) and a proportionality factor ϵ' with $0 \leq \epsilon' \leq 1$ such that

(B)
$$r_i = \epsilon' \cdot r_i^*, \qquad i = 1, \dots, h.$$

Then if ϵ' is small, the correlations r_i are small in the sense that the point (r_1, \dots, r_h) lies near the centre of the ellipsoid.

Thus prepared, we obtain the following

COROLLARY. On conditions (a) and (b) of the lemma, we have

$$|b_i - \beta_i| \leq \epsilon \cdot \epsilon' / \sqrt{1 - R_i^2}, \qquad i = 1, \dots, h,$$

where ϵ and ϵ' are defined by (A)-(B).

Hence if ϵ and ϵ' are of small order the specification error of the regression coefficients b_i will at most be of order $\epsilon \epsilon'$.

In the special case of one explanatory variable, h = 1, we have $R_1 = 0$ and $|b_1 - \beta_1| \le \epsilon \epsilon'$. For example, if $\sigma(\zeta) = \frac{1}{5}\sigma(x_1)$ and $r_1 = \rho(x_1, \zeta) = \frac{1}{5}$, the specification error of b_1 cannot exceed 0, 04.

REFERENCES

- H. Wold in Association with L. Juréen, Demand Analysis: A Study in Econometrics, Geber, Stockholm, 1952; and John Wiley and Sons, New York, 1953.
- 2. H. Wold, "A theorem on regression coefficients obtained from successively extended sets of variables," Skand. Aktuarietids., Vol. 28 (1945), pp. 181-200.

SETS OF MEASURES NOT ADMITTING NECESSITY AND SUFFICIENT STATISTICS OR SUBFIELDS^{1, 2}

By T. S. PITCHER³

Let X be the interval from 0 to 1 and F the field of Borel sets on X. For every $x \leq \frac{1}{2}$, let m_x be the probability measure assigning probability $\frac{1}{2}$ to the point x and probability $\frac{1}{2}$ to the point $(x + \frac{1}{2})$ and let F_x be the subfield of F consisting of all Borel sets which contain both x and $(x + \frac{1}{2})$ or else neither. Then if M is a set of probability measures consisting of all m_x , $0 \leq x < \frac{1}{2}$ and some measures assigning probability 0 to every point, the only set of m-measure zero

Received May 4, 1956; revised June 12, 1956.

¹ The research in this document was supported jointly by the Army, Navy, and Air Force, under contract with the Massachusetts Institute of Technology.

² For definitions of these concepts, see references [1] and [2].

³ Staff Member, M.I.T., Lincoln Laboratory.

for every m in M is the empty set. Each F_x is a sufficient subfield for M with conditional expectations defined by

$$E(f | F_x)(y) = f(y) if y \neq x \text{ or } (x + \frac{1}{2}),$$

= $\frac{1}{2}[f(x) + f(x + \frac{1}{2})] if y = x \text{ or } (x + \frac{1}{2}).$

If M has a best sufficient subfield F^0 , then F^0 includes only sets having the property that for every $x<\frac{1}{2}$, either both x and $(x+\frac{1}{2})$ are in the set or neither is, so that $E(f\mid F^0)$ $(x)=E(f\mid F^0)$ $(x+\frac{1}{2})$. In particular if we write f_x for the characteristic function of the point x, then $E(f_x\mid F^0)=\frac{1}{2}(f_x+f_{x+\frac{1}{2}})$ if $x<\frac{1}{2}$. If f is the characteristic function of the interval from 0 to $\frac{1}{2}$, $E(f\mid F^0)\geq E(f_x\mid F^0)$ for every $x<\frac{1}{2}$ since $f\geq f_x$, so that $E(f\mid F^0)\geq \frac{1}{2}$ everywhere; and since $\int E(f\mid F^0)\,dm_x=\frac{1}{2}[E(f\mid F^0)\,(x)+E(f\mid F^0)\,(x+\frac{1}{2})]=\int f\,dm_x=\frac{1}{2}$ we have $E(f\mid F^0)=\frac{1}{2}$ everywhere. Hence for any other m in M, $\int_0^1 dm=\int_0^1 f\,dm=\int_0^1 f\,dm=$

Another example of the same type can be made up as follows: let A_1 and A_2 be subsets of the intervals from 0 to $\frac{1}{2}$ and $\frac{1}{2}$ to 1 respectively, let ϕ be a 1:1 map of A_1 onto A_2 , and suppose that A_1 is a Borel set, but A_2 is not. For every x in A_1 , let m_x assign probability $\frac{1}{2}$ to x and probability $\frac{1}{2}$ to $\phi(x)$; for every x not in A_1 or A_2 , let m_x assign probability 1 to x. If M consists of all these m_x , then, as above, the subfields F_x of sets containing either both x and $\phi(x)$ or neither are sufficient for M. Moreover, if f_1 and f_2 are the characteristic functions of A_1 and A_2 respectively and F^0 is a sufficient subfield contained in all the F_x , then, necessarily, $E(f_1 \mid F^0) = (\frac{1}{2})$ ($f_1 + f_2$), which is not measurable.

These examples do not have necessary and sufficient statistics. Each of the fields F_x is induced by the statistic T_x defined by $T_x(x) = T_x(x + \frac{1}{2}) = x$ and $T_x(y) = y$, otherwise. The T_x are sufficient since the F_x are. Since the only M-null set is the empty set, a necessary and sufficient statistic T^0 would have to be exactly a function of each T_x and hence would induce a sufficient subfield F^0 contained in all the F_x . This has already been shown to be impossible.

REFERENCES

- E. L. LEHMANN AND H. SCHEFFE, "Completeness, similar regions, and unbiased estimation, Part I," Sankhya, Vol. 10 (1950), pp. 305-340.
- [2] R. R. Bahadur, "Sufficiency and statistical decision functions," Ann. Math. Stat., Vol. 25 (1954), pp. 423-462.
- [3] C. Kuratowski, Topologie I, Deuxieme Edition, Monografie Matematyczne, Warszawa, 1948.

⁴ The existence of such a map is proved in [3].