MULTISTAGE STATISTICAL DECISION PROCEDURES'

By M. A. Girsuick, S. KaruiN, anp H. L. RoypeN

Stanford University

1. Introduction. A class of problems which arise in a variety of forms can be
formulated as follows: We are requested to make periodic decisions of the same
type but based on an increasing amount of information. Suppose we have a
collection Dy of decision procedures for the kth stage, given the amount of
information avsilable to us at that stage, and suppose that the procedures of D;
are admissible under the assumption that the kth-stage decision is all that is
required of us. Is it then true that when we have to prescribe decision pro-
cedures d;, dz, - - -, d, for each stage, we obtain an admissible class by taking

an arbitrary procedure from each D, ? The answer turns out to be no in a large-

class of such decision problems which we consider here. This means that by plan-
ning our whole sequence of decision procedures in advance we are able to do
better on an average than if we were to make each decision as it arises. The
present paper is devoted to the problem of prescribing rules which tell how the
single-stage decision procedures di should interlock with one another so as to
give a minimal complete class of decision procedures for the multistage statistical
decision problem. This problem is similar to the classical sequential decision
problems which do not fix in advance the number of stages. In many- respects
the problem formulated here is simpler than the classical sequential decision
problem, and sharper results are obtained—e.g., minimal complete classes of
statistical decision procedures are determined.

In order to illustrate the nature of this type of decision problem and its analysis,
we might look at the following simple example: A biased coin is tossed, and the
player is required to call heads or tails, being pa,ifi one unit for a correct call and
nothing for an incorrect one. The first call of the player is made in complete
ignorance, but for the nth play he has the evidence of the first ( — 1) tosses
on which to make his call. To prescribe the classes D, of strategies admissible
for a single stage is to consider the problem of making the nth call on the basis
of the first (n — 1) outcomes, the first (n — 1) calls having been forgotten.
We then have the game in which nature chooses the bias p on the coin, the
player observes a random variable z binomially distributed with parameter p
and must choose between two actions with loss function —p and (p — 1). Here
a decision procedure or strategy for the player consists of a function ¢(z) which
gives the probability® of calling heads if z is the number of heads that have
previously been observed. Problems of this sort have been considered in [1]
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and [2], and it is known that each decision procedure is dominated by a “mono-
tone” procedure—i.e., one for which ¢(z) = 0 for z < ¢, and ¢(z) = 1 for z > .

The global approach to our coin-tossing endeavor is to look at the whole
series of tosses and calls as a single decision problem. Suppose for convenience
that we agree at the beginning that our decision problem is to terminate after n
tosses. Then a decision. procedure consists of n functions {¢:}, the function ¢;
giving the probability of calling heads on the 7th toss if 2z; heads have appeared
in the first (+ — 1) tosses. It is clear that we get a complete class of decision
procedures if we allow only those functions ¢; which provide a monotone pro-
cedure for the ith toss, but it seems possible (and is in fact the case) that we
might get a smaller complete class if we restricted ourselves to procedures ¢;
where the separate components ¢; are related to one another in some fashion.
We shall see that a complete class is formed by those strategies for which ¢:(z;) =
0 for z; < t; and ¢:(z;) = 1 for z; > ¢;, with the numbers #; having the property
that both #; and (¢ — #;) are increasing functions of 7. If we impose suitable
restrictions on ¢;(¢;), then we get not only a complete but also an admissible
class.

Aside from the many straightforward statistical problems involving multistage
decisions, there arises in inventory analysis an important class of examples where
repeated decisions must be made in the face of uncertainty. Suppose the dis-
tribution of demand of a commodity has a known parametric form with unknown
parameter. This.is a very common assumption. Decisions must be made period-
ically (the first of each month, for example) for ordering a certain amount of
the commodity to have in stock in order to meet demand. Certain costs are
incurred for storage, for purchase of the commodity, and for not having enough
on hand to satisfy demand. At the same time, the exact distribution is not
known, and more information accumulates about these distributions as the
various periods roll by. Here again we are faced with a multistage statistical
decision problem of considerable importance, and it is of value to know how the
decisions over the periods should be related to form an admissible procedure.

Many other examples of the above type can be cited which involve making
decisions over several stages where more information of the uncertainty evolves
with time. This investigation represents a first attempt in analyzing the relation-
ship of the various decisions in the several stages from the point of view of
statistical decision theory.

In the next section we describe a general class of games of this type and
give theorems regarding complete and admissible classes.

2. Description of a class of games and decision procedures for them. We
consider games of the following sort: Nature chooses a point w in an interval Q
of the real line (or is in an unknown state specified by w). Each play of the game
consists of the player choosing one of two actions and observing a random
variable * whose cumulative distribution is of the exponential class, i.e., is
given by
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1) Plele) = 8) [ o dutd,

where 8(w) > 0 for w ¢ @ and u(f) in a o-finite measure defined on the real line.
This family of distributions includes many well-known examples such as the
Normal with known variance, Poisson, Gamma, and Binomial.

In most games of this sort which arise in practice the loss on a play is given
by a function [,(x) of the action v taken by the player and the outcome x of the
observation of the random variable. However, we shall only be interested in the
expected loss

LG = [ 1@ dP@|w),

and it is on this that we place our restrictions.

In the present article we consider only the case of two actions and require that
there be a point wp such that L;(w) < Li(w) for w < wp and L;(w) > Lo(w) for
® > wp. This corresponds essentially to the usual one-sided statistical testing
hypothesis. The loss functions L,(w) are henceforth assumed to be sufficiently
regular to insure the existence of all the integrals involving them that we will
have occasion to consider. Furthermore, we assume that L; — L, has at most a
countable number of discontinuities of the first kind. This last assumption is
useful in connection with Theorem 2.

If we take n observations of a random variable with distribution (1), then
their sum z, is a sufficient statistic [1] and has the cumulative distribution

2,

@ Palen | 0) = 8" [ ¢ dualt),

where u,(f) is the convolution of u with itself n» times. Thus, if we look at the
(n + 1)-st decision by itself on the basis of the first n observations, a decision
procedure consists of specifying the probability ¢.(z,.) with which we take ac-
tion 1, having observed z, . The risk on this play becomes

3 enlon |6) = B@I [ e on(an)Ta(@) + (1= ealon)) (La(o)] dinGen).

Various aspects of this fixed sample size game have been considered in [2]
and a minimal complete class of decision procedures for this game is the class of
monotone procedures: those of the form ¢,(z) = 0 for ¢t < ¢, and ¢,(2) = 1
for z > ¢, . We speak of ¢, as the “critical number” for ¢, . If u, has a discon-
tinuity at ¢, , then z, = ¢, occurs with positive probability, and the value ¢.(t,)
becomes important. In this case we shall refer to ¢,(t.) as the randomization

at i, .
If we now take a multistage view of the first n plays of the game, a decision
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procedure becomes a set ¢ = {p;}i~o consisting of the procedures for each play,
and the risk becomes

@ o le) = X aleil o),

where p; is given by (3).

Thus all of the decision procedures which we shall consider from now on
are completely specified by the critical numbers ¢; and the randomizations
A; = @j(t;) at them.

A complete class®of decision procedures is obtained if we restrict each ¢;
to be a monotone procedure. Two strategies are said to be equivalent if they
give the same value to the risk function (4) for each value of w. We shall not
regard equivalent strategies as distinct, although the functions {¢;} which
specify them may be different. For example, in the coin-tossing game, a strategy
which tells us to call heads on the fourth try if more than (1%) heads have oc-

_curred on the first three plays is equivalent to one which tells us to call heads
on the fourth if two or more heads have occurred in the first three plays. In
case the measure du in (1) is atomless, two strategies with the same critical
numbers are equivalent, and the randomizations are irrelevant. The specifica-
tion becomes unique if we restrict ¢; to the spectrum of du; and require ¢;(t;) = 1
unless ¢; is an atom of du; .

3. The Principal theorems. We recall that the spectrum of a random variable
(or-of its distribution) is the set of those points = with the property that every
open interval containing x is assigned positive probability. We define the range
T of a random variable (or of its distribution) as the convex hull of its spectrum.
T is automatically a closed interval, which we shall denote by [a, b] where a may
be — e and b may be + «.

THEOREM 1. Let F be an a priort probability measure on Q with sets of positive
measure above and below wo . If s = (g1, -+ , ¢a) s a Bayes procedure against F
with critical numbers (t;, --- , t.), then-t; — t;_; must be an interior point of T
fori =2 --- nm.

In this theorem © — o and (—») — (— ») are always to be taken as in-
terior points of I'. The necessary restrictions placed on the relation between ¢,
and ¢;_, when a strategy is Bayes are given below for the four principal members
of the exponential family.

1) Binomial i+ 1> 86> 6,
2) Poisson i > tia,
3) Gamma ti > tia,

4) Normal with known o t; can be anything.
We defer the proof of this theorem until Section 5.

As a corollary of Theorem 1 we have the following description of a complete
class of strategies.

THEOREM 2. Let § be the class of decision procedures whose critical numbers satisfy
t: — tiy € T' and whose randomizations have the property that if t; — t;_1 is an end-
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point of T, and ¢;1(ti1) > 0, then ¢i(t;) = 1. Then $ is an essentially complete
class.

The question which arises at this point is whether or not the decision pro-
cedures of class $ are all admissible. For an important class of distributions of the
exponential family, we are able to say that they are. These are the distributions
for which the natural range Q@ of w is open, where by the natural range of w we
mean the set of w for which

00

[ 0

is finite. We shall use ¢ and d to denote the endpoints of the interval.

THEOREM 5. If the natural range of w is open, then all the strategies of class $ are
admissible.

On the basis of these theorems we can now describe a complete and admissible
class of procedures for some simple examples. In the example of the biased coin,
the natural range of w is’ (— 0, «), and so the class § is both complete and
admissible. Thus one’s strategy for such a game should depend only on the
number of heads and tails that have occurred; and if A;; is the probability of
taking action 1 (calling heads) when 7 heads and j tails have been observed, then
this strategy is in 8 if and only if A;; > 0 implies that A;; and A{; are all equal
to one for 7 > 7 and j < j. This criterion can be expressed loosely as follows:

If on a given play the player calls heads with a nonzero probability, and if a
head occurs on that play, then the player must call heads on the following play.
Thus this criterion seems to be one of consistency.

In the case of a Poisson distribution, if A;, is the probability of betting on a
“successful” outcome on the nth play with 7 successes having been observed,
then a procedure is in 8 if and only if A;, < 1 implies that A;»» = 0 forall ' > n.

For a normally distributed variable, however, we have I' = (— o, ),
and so the single-stage procedures can be related to one another in a completely
arbitrary fashion, and the resulting multistage procedure will still be admissible.
This special result was obtained independently by H. Rubin.

4. Preliminary lemmas. This section is devoted to establishing the funda-
mental lemmas needed throughout the sequel.
Lemma 1. If h(w) changes sign at most once and wo ©s a change point, then

o(z) = f h(w) dH(w)  with dH() = 0

has at most one zero, counting multiplicity, provided H(w) does not concentrate ts
measure fully in the set-of zeros of h(w) or we .

REMARK. A point w is called a change point of h(w) if h(w)h(w) < 0 for o’ =
w £ w, w # w, with inequality for at least one choice of »’ and w.

3 If p is the probability of heads, then w = log [p/(1 — p)].
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Proor. Consider the relation
2 @™ = [ @00 — wh(e) dH).

As (@ — wo)h(w) has only one sign since both (v — wp) and h(w) change signs at
the same point, we deduce by virtue of the hypothesis that d/dx)g(x)e "]
is strictly of one sign, and hence g(z)e ™ is strictly monotone. This implies that
g(z) can vanish at most once, counting multiplicities. If H has positive measure
in both intervals (— ®, w) and (w, + ), then there exists precisely one zero.
This is easy to see by letting z tend to infinity and analyzing the rate of growth
of the integrand.

On further careful examination of the proof of Lemma 1, we notice that if
g(z) possesses one change of sign, then both g(z) and h(w) change signs in the
same directions as their respective arguments increase.

CoROLLARY. If

x@=fwm@—h@wma

where F does not concentrate fully at wo, then \(z) vanishes at most once, and if F
has measure in both (— ®, wy) and (wo, ), then \(x) vanishes precisely once.
Lemma 2. If s, — s does not belong to T, then B(w)e”“*™*” is monotonic. (In
particular, provided p has at least two points in its spectrum if s — sy < a, then
B(w)e” "™ is strictly decreasing; if s — s = b, then B(w)e** ™ is strictly in-
creasing.)
Proor. Consider the function

1 1

B = e = o)
f 6“(3_”) d“(x)

We obtain
mw = [“PE - ) du@ 20 i ysa

and thus m(w) is monotonic increasing, whence B(w)e““’ ™ is decreasing. A
similar argument applies to the case where y = b.

The next lemma will be useful in determining the admissible strategies of the
multistage decision problem.

LeMMa 3. Let the natural range @ be open. If z is interior to T, then B(w)e*> — 0
as w — the end points of Q.

Suppose first that @ = (—®, ). Let 4 = {¢£|§ > z + ¢}. Since ze int T
for e sufficiently small, ud > 0.

1 1 1 1

Blw)e™ = = < = .
[ e aw [ e2ae [ eae O
Q A A
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As w — + «, the last quantity — 0. A similar argument proves the assertion

forw — — .
Suppose @ = (a, b) where, say, b is finite. Form the ratio

f et du(f)
f ew(é—z) d[.L(E)

wT
2

for w € 2. As w — b, the ratio tends to €. But as w — b, [¢** du(¥) — « by
virtue of the fact that © is open. Hence f¢**™ du(£) must tend to © as w — b
if the ratio is to tend to the finite limit ¢* at b. A similar argument at the point
a proves the assertion, whenever a is finite.

It should be noticed that if an endpoint of € is infinite, then the requirement
that = ¢ int T' is essential, whereas if the endpoint is finite, this is not needed.
If Q is not open then for every z, ¢“"8(w) need not converge to zero as w tends to
the endpoints of Q.

The following examples will illustrate these last facts:

() If du(z) = ¢"'?, then @ = (— w0, ®) is open.
z* dx z >0, a =0,

z =0,
then @ = (— =, 0) is open. Note that for x > 0 interior to T, then ¢ ™g(w) =
Clw|%"™ — 0asw— — o, while for z = 0, ¢8(w) = C|w|*— + .

(iii) If du(z) = ¢ '*' dz, then @ = (—1, 1).

(iv) If du(z) = [¢'™/(1 + &%), then @ = (—1, 1) is not open.

(v) Any exponential distribution where the spectrum of u is a compact
set has @ = (— », «) and thus falls in the domain of validity of Lemma 3.

(i) If du(z) =

5. Bayes procedures and an essentially complete class. A complete class of
procedures generally too large is easy to determine. In fact, the class of pro-
cedures s = (¢, -+, ¢n), Where ¢; is a monotone procedure for the ith stage,
is complete. A monotone procedure is determined by a critical number ¢; such
that ¢:(2;) = 1 for z; < ¢; and ¢:(z1) = 0 for z; > ¢; (with possible randomiza-
tion relevant on ¢; if u{z;} > 0).

At each stage the risk function is

ol 89 = [ {L@i(a) + L@l = ¢u(al} 1BV du.
This is the usual risk function for a single-stage, one-sided decision problem with
random variable z;, so any procedure which is not monotone for the 7th stage
can be improved upon by inserting a monotone procedure at the 7th stage.
(See [2].) Our object here for the multistage decision problem is to obtain an
essentially minimal complete class of procedures. To do this, we first character-

ize the Bayes solutions.
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A procedure s is Bayes against an a priori distribution F(w) on Q if
p(F, s) = min, p(F, s), where po(F,s) = 2.1 pi(w, ¢:) dF (w).

Interchanging the order of integration
o, ) = 3 [ 6:e) dus [ “Ia(a) — L@@ dF ) + C(B),

where C(F) is a function of F which does not involve s. It is clear now what s
must be in order to minimize this expression. The optimal procedure s =

(¢17 "',¢n)iS

1, if f ¢“Ly(w) — La(@]B@)])* dF(w) < 0,
¢:i(2;) =
0, if [ ¢“[Ly(w) — La(@)B(w)] dF(w) > 0.

But
0) = [ ¢Ma(e) — LB dF()

changes sign once, since L;(w) — Ly(w) changes sign once, and it changes in the
same order as Li(w) — Ls(w). (This assumes that F(w) has sets of positive meas-
ure both above and below wo . The reader can easily complete the elementary
analysis necessary when this is not satisfied.)

Thus there exists a ¢; such that

1, for z; <,

bi(2:) =
{0, fOl‘_ 2 > ;.

TueoreEM 1. Let F be an-a priori probability measure on Q with sets of positive
measure above and below wy . If s = (¢1, - - - , dn) 18 @ Bayes procedure against F
with critical numbers (¢, --- , t.), then t; — t,_1 must be an interior point of T
fori =2 -+ n.

Proor or THEOREM 1:

Let @ = (¢, d), where d may be + « and ¢ may be —«. For¢ = 2, --- , n,

d
(®) [ ¢lw) — L@NBWI dF(w) = o,
and
d .
(®) [ ¢ lla) — LB dF (@) = 0.

(5) and (6) can be written as

@ j:: et‘le(w)ﬁi(w) dF(») = j;

w

" L) () dF (),
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and

d . wo .
® [ LB AT @) = [ I ) dF ).

wo

Suppose £; — t;—; is not interior to T, say, =b. Then by Lemma 2,

g a "
fu €'“Ly(w)B"(w) dF (w) = f e =B (w)e 1Ly ()" (w) dF ()

wo

d
> e(te—t.‘—l)"’oﬁ(wo)f e‘i-l"’Ll(w)ﬁi_l(w) dF(w)
wo
- e(tc—tc-l)wo}g(wo) j; " " Lo(w)B" (w) dF (w)
wo ® :
S f e () e 19 Ly(w) 8 (w) dF (w)

- f 0 La(w) B (@)dF (),

which is impossible by virtue of (7). THus the theorem is proved.

TueoreEM 2. Let 8 be the class of decision procedures whose critical numbers
satisfy t; — t;_1 ¢ T and whose randomizations have the property that if £; — ;4
is an endpoint of T, and ¢(t;1) > 0, then ¢(;) = 1. Then 8 is an essentially
complete class.

Proor. Let w1, wy, w; - - - represent a dense set of w; , not including wo , which
includes all other discontinuities of Li(w) — Ls(w). Considering only w;, wz,

-, wn as the pure states of nature, and in view of Theorem 1, we know that all
Bayes procedures have the form as described in the theorem with ¢; — ¢;_; in the
interior of T. Thus these procedures constitute an essentially complete class
when the states of nature are w = wi(s = 1, - -+, m). (See [1].) Hence if s is any
procedure, there exists a procedure s™ of the type indicated in the theorem where

p(wi, ¢) = plw, ™) i=1,---,m,

and hence
jé [ﬂ(w)]j[Ll(wi) - Lz(wi)] f em"(go,- — (p;”) d#j(w) = 0.

By the usual diagonal process we can select a limit strategy s from s™, that is
¢-(x) converges to ¢1(z) for every x, where r is a subsequence of m. It is easy
to see that for each 7,

p(wi, 8) 2 plas, ).

Since w; are dense in €, it follows that the above inequality can be extended to
hold for all w. Moreover, each s™ is in 8, and § is clearly closed with respect to
pointwise convergence. Thus the limit procedure s” must also be in $.
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6. Admissibility. In the preceding section an essentially complete class of
procedures was determined. It is now our purpose to investigate the admissibility
of such procedures. Throughout this section we assume that Q is open. The
analysis will be divided into two cases: (a) where du(z) is atomless, and (b)
where du(x) can possess atoms.

Case a. The o-finite measure du(a) is atomless. For this situation the collection

of procedures in $ are uniquely characterized by the critical values (.1, - - , ta),
where
1, z < t.'
pit) = {
0, z > ti,
and any randomization at ¢; is of no consequence in terms of the expected risk.
Consequently, a strategy s and the collection of critical numbers (¢, &, <+ , ta)
shall be referred to interchangeably.
TueoreM 3. All monotone strategies s = (1, to, -+, tn) With tyya — e tn T
fork =1,2,---,n — 1 are admissable.
Proor. Suppose not. Then for some s = (4, -+, t.) with fiq — & e T,

there exists a strategy s’ which is better. If s’ is not a monotone strategy with
tx41 — & € T, then by the completeness of this class of strategies, there exists a
monotone strategy s* = (tf , oo, t5) with tiy1 — & € T better than s'.

By definition,

plw, 8) = i [B(w)]*e™ f {or(z) Li(w) + (1 — @r(2) La(w) } dpe(ze),
o0 9) — o, 8%) = 3= B[ *(or = oDIn(w) — La(e)] dia(as)

= (o) — Tn)] 3 B [ L™ du 2 0

The theorem will be proved if it can be shown that this holds true only if & = e

for all k, or equivalently, p(s, w) = p(s¥, ) for all w.
For the sake of definiteness suppose that & < #f . Let 41, %2, %, -
be defined by the following relation.

lIA
3

S, S,y S tha, by < B
tiytr = tha, e biger = By, by > Uh
bt = B, ooy biger Z o, by > 1
figsr = thir, ooy bier = e, by, < th
fisn < thaa, ooyt S e, b < B,

and so on.
The strict inequality signs above mean that the measure us has positive measure

in the half-open interval between ¢, and £ . Otherwise # and & define the same
test and are to be taken equal.
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Let @ = (¢, d), where ¢ or d or both may be infinite. The first step is to show
that as w — d,

| gt
s [ [ e aw]
Ri, = : o -0,
gy | [ e d#.-,(t)l
i1
fors; +1=j =<4 .Ifd > 0, then for w near d,
tj
©) , [ au) | s ce;
t.
and as t}, > t;,, we get
t‘.'
(10) [ 76 i 2 @) exp (s, + o > 0

where ¢ > 0, and cx(e) is a constant which depends only on e and not on w.
This is certainly true for e sufficiently small, since the half-open interval (¢;, , tF,)
has positive measure by assumption.

Since t;, < f, and t;,41 = 6541, tiyar — b, > L4 — ti, . But both ¢, 1 — ¢,
and },41 — ¢, are in T. Thus for ¢ > 0 sufficiently small, t;;.; — #;, — e will
be in the interior of T'. In fact, two sufficiently small numbers ¢ > 0, > 0
can be found such that ¢;,4; — ¢, — € is in the interior of T fore — 7 = ¢ <
¢ + 7. In the bound (10), above, choose ¢ > 0 sufficiently small so that not only
is (10) satisfied, but e also has the property just indicated. Combining (9) and

(10), we have
(11) Ri, = cs(e)B(w) ™ exp {(t; — i, — €)w};

c3(e) is independent of w, € > 0, and f;,41 — &, — € isin int T for e — n <
€ = e+

Sincet, — ty1 e,k =14+ 2, ---, 7, for n; near zero and of the correct sign,
ty — tx—1 — m will be in the interior of T'. Choose each 7%, sufficiently small in
absolute value so that D i 42 |m| < 7. Then the ¢ defined by € = ¢ — > 142 m
satisfies e — n < € =< ¢ + 7. Splitting € up into ¢ + Z 7%, the upper bound
(11) can be rewritten as R}, < cs(e)8(w) exp {(tiys1 — iy — €)w} [[i428(w)
exp {(& — L1 — m)}. Since t;, 41 — &, — € isint T and & — &1 — m: are
intTfork = 4 + 2, ---, 4, each term involving w in the above bound — 0 as
w — d by Lemma 3. Thus B;, - 0asw—d > O0forj =4+ 1, ---, 4. When
d £ 0, a similar proof using £ , t, instead of ¢;, t;, and t,;1 — &, + € for
e > 0 instead of ;41 — ¢;, — e in the upper bound gives the same result.

An analogous proof shows that R}, > Ofors; + 1 <j < 3asw—c.Ina
similar manner, if R, is defined by

o | [ e a0

i

tig ; ’
[ e a0

i3

R, = —
Blw)™
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then Ri{, —0asw—c¢ dforiz + 1 =7 = 4. Similar results are obtained for
Ri, , R}, , ete.

What this shows is that as w tends to the end-pomnts of Q, the 7 term is of a
larger order of magnitude than the later terms up to and including 7; . By the
same reasoning, the 7; term is of larger order of magnitude than the later terms
up to and including 75, and so on. Thus as w — ¢ or d, the 7, term dominates
the remaining finite number of terms. Since the first 7, terms have the same sign,
the sign of ‘

n tg
> B [ e du
k
is the same as the sign of

tiy .
Z5 @
-/t: et dﬂ'a‘l’

<

which is one sign when either w — ¢ or when w — d. But the sign of L;(w) — Ls(w)

for w near ¢ is negative while for » near d it is positive. Thus for w near c,

plw, 8) — p(w, s*) is of one sign, and for w near d it is of the opposite sign. But

this contradicts the fact that p(w, s) — o(w, s¥) = 0 for all w. Thus the assump-
-tion that there exists an 4, such that ¢;, < tf, is incorrect, and the following

must hold:

=11, t=1t, -, t,=15.

The first 7; terms in p(w, 8) — p(w, s*) are zero. The argument can be repeated
again on 3, 45, etc. The conclusion is that ¢, = t for all k. Thus s = s* and
p(w, 8) = p(w, s*). This completes the proof of the theorem.

Case b. The restriction that du(z) is atomless is removed.

TuEOREM 4. Without any assumptions on u, if s is a procedure in 8 wheret; — ;1
1s interior to T for every j, then s is admissible.

Proor: Let s* denote a strategy of $ which improves s. The same domination
argument used in Theorem 3 when ¢; — ¢;; is interior to T shows that
pit)\; = AF) = 0, and thus p(s, w) = p(s*, w). This therefore implies that
s* is admissible.

TaEOREM 5. If the natural range @ of w is open, then each decision procedure in
$ is admissible.

Proor. Theorem 4 already disposes of the case in which the differences of
all critical numbers are interior to T'. For the sake of simplicity of exposition,
we shall assume that the right-hand endpoint b of T is infinite. The case in which
both endpoints are finite has a completely analogous but tedious proof. Let s
be a procedure in 8, and let s* be a procedure which betters s. Since $ is complete,
we may assume that s* is in 8.

The critical numbers of s are denoted as previously by ¢;, and the respective
randomizations at ¢; by A; . The notation ¢; > ¢f for this case shall mean either
t; > ¥ or t; = £f and A; > A where the last possibility only has relevance
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when p;{t;} > 0. Let the indices 4, %2, 3, - -+ be defined as in the proof of
Theorem 3, subject to the new interpretation of ¢; = ¢ .
Pursuing a similar analysis as in Theorem 3, it remains.only to show that

f e“(¢; — o} du;

B(w)’

i
R;‘ =

Blw)™ I f ' “(pi, — o1,) dui,

tends to zero as w tends to the end points of @ forallj = 4 + 1, ---, 4. The
need to represent the expression for R}, in terms of ¢;, ¢} , ¢, and ¢y, is that
the randomization of ¢;, ¢} , etc., at the critical numbers may contribute to
the integral.

The only situation necessitating an additional argument distinct from that
used in the proof of Theorem 3 arises when t;, = &I, with \;, < A},. The ex-
pression R, becomes

Bw)’ f e“(o; —¢f) du;
CB(w) " uiy {t;,] €'

For the term j(i + 1 = j = 4) if t; = &;;, + (j — 71)a, then the same must
hold for £ , since ¢; = #f ; and \; = A} = 1, since s and s* both belong to S.
Consequently ¢; = & . Therefore we may assume that t; > tf > t;, + (j — 4)a.
If also &f > t;, + (j — ¢)a = tf + (j — %)a, then the argument can be carried
through as in Theorem 5, so let us further suppose that {7 = t;, + (j — @)ea.
This requires that A} = 1. It is now asserted that

Ri, =

(12) 8@ [ s — o) duy

tends to zero as w — the endpoints of 2, where the range of integration of ¢
is a region which is included in the half-open interval ¢; = ¢t > &, + (j — @)a.

To establish this last fact, we distinguish two cases according as uf{a} > 0
or uf{a} = 0.

I. u{a} > 0: Note that

i1 (t=ti ) it (t—t; —ar)
Blw) e T < — < C T < (O
[u{a}ex]

as w tends to the left-hand endpoint of @ for ¢ > 1, + ar(r = 7 — 41). Of course,
for each ¢ in the same region by Lemma 3,

B(w)j—ile(t—t;l)w — 0.

As du is integrable on any closed interval contained in the spectrum of u, which
may include an endpoint if it belongs to the point spectrum, the expression in
(11) on account of the Lebesgue convergence theorem tends to zero as w — ¢
where @ = (¢, d). If d < « the argument is the same as at ¢. If d = o, then
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B(w) vanishes faster than any exponential as w — d, and the result in (12) is
immediately clear.
II. u{a} = 0. The formula (12) is bounded by

00

Bt [ 10 ),

[ty +(G—i1)al+

which on some simple calculation reduces to
f N € duy, (t + ).

If c = —wasw— — », then it is easy to see that
f e dut + ;) — 0.
a+

If c is finite, then the argument of showing that (12) tends to zero is similar to
that of I above. The reasoning involved at the other endpoint d is similar and
is omitted.

Having thus established the assertion of (12) the remainder of the reasoning
proceeds as in the proof of Theorem 3.

7. Converse of Theorem 1.

THEOREM 6. If a decision procedure s has critical numbers t; with 1 — tig
tnterior to T, then s is Bayes against an a priori distribution fully concentrated at
n + 1 points, n being the total number of plays of the game.

Proor. Let us consider a distribution F whose spectrum is the n + 1 point
w; . In order for s to be Bayes against F, it is necessary and sufficient that

n+41

(13) Z eﬁ.'ti[ﬁ(w)]j(Ll — L) (w)a; = 0 i=L2 .- n

T

The solutions y; = [a(Ly — Ls)(w;)] of these equations are proportional to the
cofactors of the last row of

e""'8(w), e 1Bwr), -+, € 1B(wnsa) ]
emtzﬁﬁ(wl)’ ewztzﬂz(wz) e ew,,+1tzﬁz(w”+l) |
emltnﬁn(wl)’ ewzinﬁn(wz) e ew”+lt"ﬁn(wn+l)J

ax Qg R 7 29K

The values w; and w: are chosen fixed subject only to the inequalities w; <
Wo < w2 .

The remaining w;, ¢ = 3, -+, n + 1, are chosen near ¢ and d appropriately
so that B(w;) exp {w:(¢; — t;—1)} are all near zero but each of smaller order of
magnitude. In fact, each w; is chosen successively, each closer to ¢ or d so that
B(ws) exp {ws(t; — t;_1)} isof larger order of magnitude than 8(ws) exp {wa(t; — 1)},
which in turn is of larger order of magnitude than 8(ws) exp {ws(t; — t;-1)}, ete.
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This careful selection of w; implies that the cofactor of a, is dominated by
(—1) exp {wats} exp {wstao} « - - €xp {wassti}[8"(ws)B(ws)" " - - - B(wass)] and
thus is negative, and in a similar manner we can infer that the cofactor of a, is
positive. Thus according to our choice of w; and w,, it follows that a; > 0,
Q2 > 0.

The sign of the cofactors a.(r = 3, - - - , n + 1) is independent of the ¢hoice
of w;, provided only that 8(w)exp {w.(t; — t;1)} has the right order of magni-
tude as described above. The exact sign of a, is

w1tn -1 woln 1
) n eznl

eult"ﬂ(w) eugt,,ﬁ(w) |

The w; are then selected near either ¢ or d, so that they produce the correct mag-
nitude and so that a; > 0. This entails choosing «, near ¢ and d alternately.
The Bayes distribution is of the form: place the mass A\; = a; /)_a; at w; ; then

[ Bt ~ L)@ dP@) = 0

sign of cofactor @, = (—1)"

reduces to the equations (13), and hence the Bayes strategy for this F is the
given s. This completes the proof.

The above proof was suggested by J. Pratt and replaces a more cumbersome
construction by the authors, which showed also that each Bayes strategy was
Bayes against a strategy fully concentrated at only n points.

REFERENCES

[1] D. BLackwELL AND M. A. GirsHICK, Theory of Games of Statistical Decisions, John
Wiley and Sons, Inc., New York, 1954.

[2] S. KarLiN anp H. RuBiN, The theory of decision procedures for distributions with
monotone likelihood ratio,” submitted to Ann. Math. Stat.



