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Summary. Maximum likelihood estimates and their asymptotic distribution
are obtained for the transition probabilities in a Markov chain of arbitrary
order when there are repeated observations of the chain. Likelihood ratio tests
and x*-tests of the form used in contingency tables are obtained for testing the
following hypotheses: (a) that the transition probabilities of a first order chain
are constant, (b) that in case the transition probabilities are constant, they are
specified numbers, and (c) that the process is a uth order Markov chain against
the alternative it is rth but not uth order. In case v = 0 and » = 1, case (c)
results in tests of the null hypothesis that observations at successive time points
are statistically independent against the alternate hypothesis that observations
are from a first order Markov chain. Tests of several other hypotheses are also
considered. The statistical analysis in the case of a single observation of a long
chain is also discussed. There is some discussion of the relation between likeli-
hood ratio criteria and x2-tests of the form used in contingency tables.

1. Introduction. A Markov chain is sometimes a suitable probability model
for certain time series in which the observation at a given time is the category
into which an individual falls. The simplest Markov chain is that in which
there are a finite number of states or categories and a finite number of equi-
distant time points at which observations are made, the chain is of first-order,
and the transition probabilities are the same for each time interval. Such a
chain is described by the initial state and the set of transition probabilities;
namely, the conditional probability of going into each state, given the im-
mediately preceding state. We shall consider methods of statistical inference
for this model when there are many observations in each of the initial states
and the same set of transition probabilities operate. For example, one may wish
to estimate the transition probabilities or test hypotheses about them. We de-
velop an asymptotic theory for these methods of inference when the number of
observations increases. We shall also consider methods of inference for more
general models, for example, where the transition probabilities need not be the
same for each time interval.

An illustration of the use of some of the statistical methods described herein
has been given in detail [2]. The data for this illustration came from a ‘“panel
study” on vote intention. Preceding the 1940 presidential election each of a
number of potential voters was asked his party or candidate preference each

Received August 29, 1955; revised October 18, 1956.
1 This work was carried out under the sponsorship of the Social Science Research Council,
The RAND Corporation, and the Statistics Branch, Office of Naval Research.

89

[Z8 (€
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z

The Annals of Mathematical Statistics. RIKOIS ®
Www.jstor.org



90 T. W. ANDERSON AND LEO A. GOODMAN

month from May to October (6 interviews). At each interview each person was
classified as Republican, Democrat, or “Don’t Know,” the latter being a residual
category consisting primarily of people who had not decided on a party or
candidate. One of the null hypotheses in the study was that the probability of
a voter’s intention at one interview depended only on his intention at the im-
mediately preceding interview (first-order case), that such a probability was
constant over time (stationarity), and that the same probabilities hold for all
individuals. It was of interest to see how the data conformed to this null hy-
pothesis, and also in what specific ways the data differed from this hypothesis.

This present paper develops and extends the theory and the methods given
in [1] and [2]. It also presents some newer methods, which wére first mentioned
in [9], that are somewhat different from those given in [1] and [2], and explains
how to use both the old and new methods for dealing with more general hy-
potheses. Some corrections of formulas appearing in [1] and [2] are also given
in the present paper. An advantage of some of the new methods presented
herein is that, for many users of these methods, their motivation and. their
application seem to be simpler.

The problem of the estimation of the transition probabilities, and of the test-
ing of goodness of fit and the order of the chain has been studied by Bartlett
[3] and Hoel [10] in the situation where only a single sequence of states is ob-
ierved; they consider the asymptotic theory as the number of time points
sncreases. We shall discuss this situation in Section 5 of the present paper, where
a x’-test of the form used in contingency tables is given for a hypothesis that is
a generalization of a hypothesis that was considered from the likelihood ratio
point of view by Hoel [10].

In the present paper, we present both likelihood ratio criteria and x2-tests,
and it is shown how these methods are related to some ordinary contingency
table procedures. A discussion of the relation between likelihood ratio tests
and x?-tests appears in the final section.

For further discussion of Markov chains, the reader is referred to [2] or [7].

2. Estimation of the parameters of a first-order Markov chain.

2.1. The model. Let the states be ¢ = 1, 2, ---, m. Though the state 7 is
usually thought of as an integer running from 1 to m, no actual use is made of
this ordered arrangement, so that 7z might be, for example, a political party, a
geographical place, a pair of numbers (a, b), etc. Let the times of observation

bet=20,1,.---,T. Let p;;(t) (¢, =1,---,m;t =1,---, T) be the proba-
bility of state j at time ¢, given state ¢ at time ¢ — 1. We shall deal both with
(a) stationary transition probabilities (that is, pi;(t) = psjfort = 1,---, T)

and with (b) nonstationary transition probabilities (that is, where the transition
probabilities need not be the same for each time interval). We assume in this
section that there are n;(0) individuals in state ¢ at ¢ = 0. In this section, we
treat the n;(0) as though they were nonrandom, while in Section 4, we shall
discuss the case where they are random variables. An observation on a given
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individual consists of the sequence of states the individual isinat¢t = 0,1, ---,
T, namely ¢(0), i(1), 2(2), - - -, #(T). Given the initial state ¢(0), there are m”
possible sequences. These represent mutually exclusive events with probabilities

(2.1) Pi@i) Piyi@ ° °° Pi(r-1)4(1)

when the transition probabilities are stationary. (When the transition prob-
abilities are not necessarily stationary, symbols of the form p;._1i) should be
replaced by pi—piw (t) throughout.)

Let n;;(f) denote the number of individuals in state 7 at ¢ — 1 and j at .
We shall show that the set of n;;(¢) (¢, 7 =1,---,m;t=1,---, T), a set
of m*T numbers, form a set of sufficient statistics for the observed sequences.
Let niwiqy...«m be the number of individuals whose sequence of states is #(0),
i(1), - -+, 2(T). Then

(2.2) i) = 2 Ni@ia---icm 5

where the sum is over all values of the ¢’s with ¢(! — 1) = g and #(¢) = j. The
probability, in the nmT dimensional space describing all sequences for all n
individuals (for each initial state there are nT dimensions), of a given ordered
set of sequences for the n individuals is

II piwir(D) P (@) - - Picr—piam (T @i 4D
— (H [Pi(oml)(l)]n"(o)"m'""(T)) ... (H[Pi(r—l)i(r)(T)]"“m“)'“"(T))

23) = ( H pt(O)zll) (1)"'(0)'(”(”) cee ( H Pi(r—1yi(T) (T)ﬂi(r—l“(ﬂm)
2(0),7 i(T—1),i(T)

H 11 po; ®™,

t=1 g,j

Il

where the products in the first two lines are over all values of the 7' + 1 indices.
Thus, the set of numbers 7n;;(f) form a set of sufficient statistics, as announced.

The actual distribution of the n;;(f) is (2.3) multiplied by an appropriate
function of factorials. Let nit — 1) = D7, ni(t). Then the conditional
distribution of n;;(¢),j = 1, -- - , m, given n;(t — 1) (or given nx(s), k =1, -- -,
m;s=20,---,t —1)is

@4) mlt = DU somic,
III nij(t) ! =1

This is the same distribution as one would obtain if one had n,(t — 1) observa-
tions on a multinomial distribution with probabilities p;;(¢) and with resulting
numbers 7;;(t). The distribution of the n;;(t) (conditional on the 7,(0)) is

(25) T TT[ 2 =D s
t=17 i=1 Hnu(t)' j=1

j=1
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For a Markov chain with stationary transition probabilities, a stronger result
concerning sufficiency follows from (2.3); namely, the set n:; = i1 nii(t)
form a set of sufficient statistics. This follows from the fact that, when the
transition probabilities are stationary, the probability (2.3) can be written
in the form

T
(2.6) 1L IT pyi® = 11 pi

=1 0.j i
For not necessarily stationary transition probabilities p:;(t), the n:;(t) are a
minimal set of sufficient statistics.

2.2. Maximum likelihood estimates. The stationary transition probabilities
Ps; can be estimated by maximizing the probability (2.6) with respect to the
pij , subject of course to the restrictions p;; = 0 and

27 ,le"'=1’ i=1,2--,m,
when the n;; are the actual observations. This probability is precisely of the
same form, except for a factor that does not depend on p;;, as that obtained
for m independent samples, where the 7th sample (z = 1, 2, --- , m) consists of
n¥ = D m;:; multinomial trials with probabilities p;; (4,7 = 1,2, - -+, m). For
such samples, it is well-known and easily verified that the maximum likelihood
estimates for p,; are

m

Py = ny/nf = tZ_Zl n.-,-(t)/kZ 2 nalt)

-] teml

(2.8)

> na®/ Xm0,

and hence this is also true for any other distribution in which *the elementary
probability is of the same form except for parameter-free factors, and the re-
strictions on the p;; are the same. In particular, it applies to the estimation of
the parameters p;; in (2.6).

When the transition probabilities are not necessarily stationary, the general
approach used in the preceding paragraph can still be applied, and the maximum
likelihood estimates for the p;;(t) are found to be

29) 540 = ns@/nt = 1) = ny(® / 3 mal0.

The same maximum likelihood estimates for the p;;(tf) are obtained when we
consider the conditional distribution of n;;(t) given n;(t — 1) as when the joint
distribution of the n.;(1), n:;(2), - -+, n:;(T) is used. Formally these estimates
are the same as one would obtain if for each 7 and ¢ one had n;(t — 1) observa-
tions on a multinomial distribution with probabilities p;;(¢) and with resulting
numbers 7n;;(t).
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The estimates can be described in the following way: Let the entries n;(t)
for given t be entered in a two-way m X m table. The estimate of p;;(t) is the 7,
Jth entry in the table divided by the sum of the entries in the 7th row. In order
to estimate p,; for a stationary chain, add the corresponding entries in the two-
way tables for ¢ = 1, ---, T, obtaining a two-way table with entries n;; =
> m:(t). The estimate of p;; is the 4, jth entry of the table of n;s divided by
the sum of the entries in the 7th row.

The covariance structure of the maximum likelihood estimates presented in
this section will be given further on.

2.3. Asymptotic behavior of n;(f). To find the asymptotic behavior of the
pi;, first consider the n;j(). We shall assume that 7:(0)/>. 7;(0) — n
(111: > 0, E M = 1) as Z n,(O) — o, For each 1(0), the set Ni©)i1)---i(T) are
simply multinomial variables with sample size n:0(0) and parameters
Pii)y Pi@)i@) * ° * Pi(r-1i(n) » and hence are asymptotically normally distributed
as the sample size increases. The n;;(f) are linear combinations of these multi-
nomial variables, and hence are also asymptotically normally distributed.

Let P = (p;;) and let pfi' be the elements of the matrix P’. Then p!? is the
probability of state j at time ¢ given state ¢ at time 0. Let n,;;(¢) be the number
of sequences including state k at time 0, 7 at time ¢ — 1 and j at time ¢. Then
we seek the low order moments of

(2.10) nt) = kf:l i (0).

The probability associated with n,;;(t) is pic™ p.; with a sample size of n.(0).

Thus

(2.11) 8ni;ii(t) = m(0)pii Vpis,
(2.12) Var{n:;(0)} = m0)pii "piil — piipij),
(2.13)  Covi{neis(t), mion(®)} = —ne(0)phi ' piipks ™ pons (t,7) #= (9, h),

since the set of ny,;;(t) follows a multinomial distribution. Covariances between
other variables were given in [1].

Let us now examine moments of #y;;(t) — nx,:(¢ — 1)p:;, where ng,(t — 1) = .
D ; Mii(t); they will be needed in obtaining the asymptotic theory for test
procedures. The conditional distribution of n;;;(t) given nk.:(t — 1) is easily
seen to be multinomial, with the probabilities p;; . Thus,

(2.14) &{ma;ii(0) | mss(t — 1)} = pajmia(t — 1),
&{n;¢;(t) — ma;i(t — 1)pis}

(2.15)
= 88{[m.4;(t) — ma;it — Dpijl | mas(t — 1)} = 0.
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The variance of this quantity is
8[ne;5i(t) — mazs(t — 1) pyj)*
= 88{[nu;i5(t) — mass(t — 1) pi]* | musi(t — 1)}

(2.16)
= 8ng;i(t — 1) pi;(1 — pij)

I

m(0) pi ™ pi(1 — piy).
The covariances of pairs of such quantities are
8[n;i;(8) — misa(t — 1) pasllne;an(t) — maza(t — 1) pan)
(217) = &8{[m;45(8) — maii(t — Dpisllne,a() — mai(t — Dpal | mess(t — 1)}
= &[—mi(t — 1) pii pa) = —m(0) pii ™ pipar Jj#h
[na;i5(8) — Mieii(t — D)pisllnn;on(t) — ma;o(t — 1) poa)
= 88{[nu;e;() — muii(t — D)pisllne;on(t) — mio(t — 1)pgal
| ma;i(t — 1), mio (8 — 1))
= 0, 1 # g.

(2.18)

8[nk;i;(1) — Misi(t — D)pijllmaion(t + ) — mio(t + 7 — 1)pgi]
= 88{[m;:5(t) — ma;s(t — Dpasllne;on(t + 1) — mao(t + 7 — Dpaal
| i (t + 7 — 1), mga(t — 1), ma5(8) )
=0, r > 0.

(2.19)

To summarize, the random variables n;:;(¢) — nw,«(t — )psjforj =1, -+,
m have means 0 and variances and covariances of multinomial variables with
probabilities p;; and sample size n,(0)pi ™). The variables n;:;(t) — nu;i(t — 1)p;;
and ng;gn(s) — Nr;o(s — 1)pgn are uncorrelated if £ = s or 7 = g.

Since we assume n;(0) fixed, ny;;;(t) and n.4(f) are independent if &k = 1.
Thus

(2.20) 8[nii(t) — ni(t — pyl = 0,

[t—1]

(2.21) &lny;(t) — ni(t — V)pi)® = g} () oes - pi;(1 — pyy),
&ni(t) — nit — Dpyllna@® — nt — 1)pal

2.22 m

( ) = - I;Jnk(o)plg'_u DiiPin, J #E b,

(2.23)  &[nii(t) — ni(t — )pijlng(s) — ny(s — Dpgp] = 0, ¢ = sori = g.
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2.4. The asymptotic distribution of the estimates. It will now be shown that
when n — oo,

g ni;(f)

V(s = pi) = V| 7
t§=:1 ’n,‘(t - 1)

= P

tZ_:l i) — piynit — 1]

(2.24) -
El'n;(t —_ 1)
i ZT: (a5 (8) — piimus(t — 1)]
— »\/7—7, k=1 ¢{=1 -

has a limiting normal distribution, and the means, variances and covariances
of the limiting distribution will be found. Because 7;:;(f) is a multjnomial
variable, we know that

(2.25) Ne;i5(8) /1 R [ 45(8) /1 (0) i
converges in probability to its expected value when 7,(0)/n — %, . Thus

1 |
plim=> nit — 1) = 1imﬁszln,-(t— 1)
L=

nao N =1 n->0
(2.26) m T
~1
=2 m2 ok
k=1 t=1

Therefore n''* (p:; — pi;) has the same limit distribution as

2 [ (®) — pynit — 1)]/n"?
(2.27) =1 _

T
Z Z M PIE:'—H

k=1 t=1

(see p. 254 in [6]).
From the conclusions in Section 2.3, the numerator of (2.27) has mean 0 and
variance

T 2 m T
29 8|S ns = ponie = | /0 = 5 2 mO@pk put — po/n
The covariance between two different numerators is

8[ 2 nal) = punie = ) || ns® = panae = | /

(2.29)

m

T
= —bi 2 Zl 7:(0) pit ™ pis pan/m,

k=1 t=

where 8;; = 01if 7 £ g and é;; = 1.
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Let

m T
(2.30) 2 2 mpk " = ¢

k=1 tm=l
Then the limiting variance of the numerator of (2.27) is ¢; p:;(1 — ps;), and
the limiting covariance between two different numerators is —é&;, ¢: Di; Don -
Because the numerators of (2.27) are linear combinations of normalized multi-
nomial variables, with fixed probabilities and increasing sample size, they have
a limiting normal distribution and the variances and covariances of this limit
distribution are the limits of the respective variances and covariances (see, e.g.,
Theorem 2, p. 5.in [4]).

Since n'’* (pi; — pi;) has the same limit distribution as (2.27), the variables
n*® (p;; — pi;) have a limiting joint normal distribution with means 0, variances
pi;(1 — pij)/d:and the covariances —8;, p:ipon/é: . The variables (ne:)*(p:; — ps;)
have a limiting joint normal distribution with means 0, variances p;;(1 — pi;)
and covariances —d;piip.n . Also, the set (n¥)"? (p:; — pi;) has a limiting
joint normal distribution with means 0, variances p;;(1 — p;;) and covariances
—8:9DsiDon , Where nF = D12 ni(t).

In other terms, the set (ng:)"'> (pi; — p:;) for a given 7 has the same limiting
distribution as the estimates of multinomial probabilities p;; with sample size
n¢; , which is the expected total number of observations ny in the 7th state for
t=0,---, T — 1. The variables (ng:)"? (p;; — ps;) for m different values of ¢
(z =1, 2, ---, m) are asymptotically independent (i.e., the limiting joint
distribution factors), and hence have the same limiting joint distribution as
obtained from similar functions of the estimates of multinomial probabilities
pi; from m independent samples with sample sizes ng; (1 = 1, 2, ---, m). It
will often be possible to reformulate hypotheses about the p;; in terms of m
independent samples consisting of multinomial trials.

We shall also make use of the fact that the variables p:;(f) = n;(t)/n:(t — 1)
for a given ¢ and ¢ have the same asymptotic distribution as the estimates of
multinomial probabilities with sample sizes &n;(¢ — 1), and the variables p;;(t)
for two different values of ¢ or two different values of ¢ are asymptotically inde-
pendent. This fact can be proved by methods similar to those used earlier in
this section. Hence, in testing hypotheses concerning the p;;(f) it will sometimes
be possible to reformulate the hypotheses in terms of m X T independent
samples consisting of multinomial trials, and standard test procedures may then
be applied.

3. Tests of hypotheses and confidence regions.

3.1. Tests of hypotheses about specific probabilities and confidence regions.
On the basis of the asymptotic distribution theory in the preceding section, we
can derive certain methods of statistical inference. Here we shall assume that
every pi; > 0.

First we consider testing the hypothesis that certain transition probabilities
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p:; have specified values pi; . We make use of the fact that under the null hy-
pothesis the (n¥)"? (p:; — pI;) have a limiting normal distribution with means
zero, and variances and covariances depending on p}; in the same way as ob-
tains for multinomial estimates. We can use standard asymptotic theory for
multinomial or normal distributions to test a” hypothesis about one or more
pij, or determine a confidence region for one or more p;; .
As a specific example consider testing the hypothesis that p;; = pi;,j =

1, ---, m, for a given 7. Under the null hypothesis,

(3.1) Z n* (Do — pn)

j=1 pu

has an asymptotic x’-distribution with m — 1 degrees of freedom (according to
the usual asymptotic theory of multinomial variables). Thus the critical region
of one test of this hypothesis at significance level o consists of the set p.; for
which (3.1) is greater than the « significance point of the x’-distribution with
m — 1 degrees of freedom. A confidence region of confidence coefficient « con-
sists of the set p?; for which (3.1) is less than the « significance point. (The pj;
in the denominator can be replaced by p:;.) Since the variables n¥ (pi; — ps;)°
for different ¢ are asymptotically independent, the forms (3.1) for different ¢ are
asymptotically independent, and hence can be added to obtain other x’-variables.
For instance a test for all p;; (4,7 = 1, 2, ---, m) can be obtained by adding
(3.1) over all 7, resulting in a x’-variable with m(m — 1) degrees of freedom.

The use of the x*test of goodness of fit is discussed in [5]. We believe that
there is as good reason for adopting the tests, which are analogous to x’-tests
of goodness of fit, described in this section as in the situation from which they
were borrowed (see [5]).

3.2. Testing the hypothesis that the transition probabilities are constant.
In the stationary Markov chain, p;; is the probability that an individual in
state 7 at time ¢ — 1 moves to state j at {. A general alternative to this assump-
tion is that the transition probability depends on ¢; let us say it is p.;(t). We test
the null hypothesis H:p;;(f) = pi; (t = 1, ---, T). Under the alternate hy-
pothesis, the estimates of the transition probabilities for time ¢ are

nij(t)
nit — 1)

The likelihood function maximized under the null hypothesis is

3.2 pi(t) =

T

(33) ITIT 7.

t=1 4,7

The likelihood function maximized under the alternative is

(34) II II Pas ()™,
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The ratio is the likelihood ratio criterion

_ ﬁij nij(t)
(3:5) A I;I g [ﬁu‘(t)]

A slight extension of a theorem of Cramér [6] or of Neyman [11] shows that
—2 log M is distributed as x> with (T — 1) [m(m — 1)] degrees of freedom when
the null hypothesis is true.

The likelihood ratio (3.5) resembles likelihood ratios obtained for standard
tests of homogeneity in contingency tables (see [6], p. 445). We shall now de-
velop further this similarity to usual procedures for contingency tables. A proof
that the results obtained by this contingency table approach are asymptotically
equivalent to those presented earlier in this section will be given in Section 6.

For a given %, the set p,;(f) has the same asymptotic distribution as the esti-
mates of multinomial probabilities p.;(t) for T independent samples. An m X T
table, which has the same formal appearance as a contingency table, can be
used to represent the joint estimates p;;(f) for a given¢ and forj = 1,2, --~, m
andt=1,2,---,T. )
\}{ 1 2 - om

1| pa(l)  Pa(l) -« Dm(l)

2 [$a@ Ha@ - D@

T | palT) palT) -+ ponlT)

The hypothesis of interest is that the random variables represented by the T
rows have the same distribution, so that the data are homogeneous in this
respect. This is equivalent to the hypothesis that there are m constants p; ,
Dz, -, Pim, With D ; p;j = 1, such-that the probability associated with the
7th column is equal to p;; in all T rows; that is, p;;(t) = pijfor¢ = 1,2, --- | T.
The x’-test of homogeneity seems appropriate here ([6], p. 445); that is, in order
to test this hypothesis, we calculate

(3.6) i = tzj: ni(t — Dpy(t) — pal® / Dis;

if the null hypothesis is true, x; has the usual limiting distribution with (m — 1)
(T — 1) degrees of freedom.

Another test of the hypothesis of homogeneity for T independent samples
from multinomial trials can be obtained by use of the likelihood ratio criterion;
that is, in order to test this hypothesis for the data given in the m X T table,
calculate
3.7) N =TT s / DI

WJ
which is formally similar to the likelihood ratio criterion. The asymptotic
distribution of —2 log A, is x* with (m — 1)(T — 1) degrees of freedom.



MARKOV CHAINS 99

The preceding remarks relating to the contingency table approach dealt
with a given value of 7. Hence, the hypothesis can be tested separately for each
value of <.

Let us now consider the joint hypothesis that p;;(t) = p;;forallz = 1,2, ---,
m,j=1,2,---,m,t=1,---, T. A test of this joint null hypothesis follows
directly from the fact that the random variables 9;;(¢) and P;; for two different
values of ¢ are asymptotically independent. Hence, under the null hypothesis,

the set of x: calculated for each ¢ = 1,2, - - - , m are asymptotically independent,
and the sum
(3.8) X = }:1 Xi =2 .‘Z ni(t — Dps(t) — pail’ / pij

= % J

has the usual limiting distribution with m(m — 1)(T — 1) degrees of freedom.
Similarly, the test criterion based on (3.5) can be written

(3.9 > —2loghi = —2log A
==l

3.3. Test of the hypothesis that the chain is of a given order. Consider first a
second-order Markov chain. Given that an individual is in state ¢z at ¢t — 2 and

injatt — 1, let p;i(t) (4,5, k=1, --- ,m;t = 2,3, ---, T) be the probability
of being in state k at t. When the second-order chain is stationary, pii(t) =
pij for t = 2, --- | T, A first-order stationary chain is a special second-order

chain, one for which p;;:(f) does not depend on 7. On the other hand, as is well-
known, the second-order chain can be represented as a more complicated first-
order chain (see, e.g. [2]). To do this, let the pair of successive states 7 and j
define a composite state (¢, 7). Then the probability of the composite state
(7, k) at ¢t given the composite state (7, j) at ¢ — 1 is p;u(t). Of course, the prob-
ability of state (h, k), h % 7, given (%, j), is zero. The composite states are easily
seen to form a chain with m® states and with certain transition probabilities 0.
This representation is useful because some of the results for first-order Markov
chains can be carried over from Section 2.

Now let n:;x(f) be the number of individuals in state at{ — 2,injat ¢t — 1,
and in k at ¢, and let nij(t — 1) = D_i n:n(f). We assume in this section that
the 7;(0) and 7;;(1) are nonrandom, extending the idea of the earlier sections
where the 7,(0) were nonrandom and the 7,;(1) were random variables. The
nia@) (@, 5,k =1,---,m;t=2,---, T)is a set of sufficient statistics for
the different sequences of states. The conditional distribution of n:;(t), given
nii(t — 1), is

n__________"f(t — DI ng k()
(3.10) IkI nijk(t)! kH-l Dijk

(When the transition probabilities need not be the same for each time interval,
the symbols p;;: should, of course, be replaced by the appropriate p;;(t) through-
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out). The joint distribution of n.u(t) for 4, 5,k = 1,--- ,mandt = 2, ---, T,
when the set of n;,(1) is given, is the product of (3.10) over 4, j and ¢.

For chains with stationary transition probabilities, a stronger result concern-
ing sufficiency can be obtained as it was for first-order chains; namely, the
numbers nij = P 1ms niu(f) form a set of sufficient statistics. The maximum
likelihood estimate of p;j; for stationary chains is

m T T
(311) i’ijk = n,-,-k/; Nijit = zzz n,-,-k(t)/tz:z ﬂi,'(t - 1).

Now let us consider testing the null hypothesis that the chain is first-order
against the alternativé that it is second-order. The null hypothesis is that
Dijk = Pojk = *** = Pmjp = P, 82y, forj, k = 1, ..., m. The likelihood
ratio criterion for testing this hypothesis is®

(3.12) A= _IkII B / D)™,
1,] 0=
where
(3~13) i)jk = Zl nijk Zl IZ nul = Z n]k(t) Z nj(t)

is the maximum likelihood estimate of p;, . We see here that p; differs some-
what from (2.8). This difference is due to the fact that in the earlier section the
n:;(1) were random variables while in this section we assumed that the n;;(1)
were nonrandom. Under the null hypothesis, —2 log A has an asymptotic x’-
distribution with m*(m — 1) — m(m — 1) = m(m — 1)* degrees of freedom.

We observe that the likelihood ratio (3.12) resembles likelihood ratios ob-
tained for problems relating to contingency tables. We shall now develop further
this similarity to standard procedures for contingency tables.

For a given j, the n''* (p:» — p:jx) have the same asymptotic distribution as
the estimates of multinomial probabilities for m independent samples (z =

2, .-+, m). An m X m table, which has the same formal appearance as a
contingency table, can be used to represent the estimates ., for a given j
and for ¢, k = 1, 2, , m. The null hypothesis is that p;x = pj for 7 = 1,

2, .-+, m, and the X test of homogeneity seems appropriate. To test this hy-
pothesis, calculate

(3.14) X; = an?,-(injk — pu)/Di

where
T-—1

(315) n’fj = ; Nk = ; g n,-jk(t) = g n.—,-(t - 1) = ;nﬁ(t).

If the hypothesis is true, x; has the usual limiting distribution with (m — 1)
degrees of freedom.

? The criterion (3.12) was written incorrectly in (6.35) of [1] and (4.10) of [2].
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In continued analogy with Section 3.2, another test of the hypothesis of
homogeneity for m independent samples from multinomial trials can be ob-
tained by use of the likelihood ratio criterion. We calculate

(3.16) N =TT G / D)™,

which is formally similar to the likelihood ratio criterion. The asymptotic
distribution of —2 log A; is x* with (m — 1) degrees of freedom.

The preceding remarks relating to the contingency table approach dealt with
a given value of j. Hence, the hypothesis can be tested separately for each

value of j. ,

Let us now consider the joint hypothesis that p;x = pj for all 7, j, &k = 1,
2, -+ -, m. A test of this joint hypothesis can be obtained by computing the sum
(3.17) X = Zl Xi = Z;‘ nii(baw — Pin)" [ Din s

1= At

which has the usual limiting distribution with m(m — 1)* degrees of freedom.
Similarly the test criterion based on (3.12) can be written

>, —2log\; = —2log A = 22 nuu log [pix / sl
(3.18) j=1 ik
=2 Zk nije [log Pip — log Piel.

1]

The preceding remarks can be directly generalized for a chain of order r.
Let pij..t (5,3, -+, k, L = 1,2, ---, m) denote the transition probability of
state I at time ¢, given state k at time { — 1 - - - and state j at time { — r + 1
and state 7 at time{ — r (¢ = r,r + 1, - - - , T'). We shall test the null hypothesis
that the process is a chain of order r — 1 (that is, pij...r = pj..aa for ¢ = 1,
2, - -~ , m) against the alternate hypothesis that it is not an r — 1 but an r-order
chain.

Let n:j....1(t) denote the observed frequency of the states ¢, 7, ---, k, I at
the respective times ¢t — 7, t — r + 1,---,¢ — 1, ¢, and let n;;..4(t — 1) =
> Tt Nij...u(). We assume here that the n;;...(r — 1) are nonrandom. The
maximum likelihood estimate of p;;...r: is

(319) i),'j..,u = n;,-...u/n:-",'...k )

where nij..k10 = D tmr Nij...1a(t) and

T T—1
(320) n’fj...k = ; Nij.ockl = tz: ’n.;j...k(t - 1) = tzl n,-j.,.k(t).
For a given set j, - - - , k, the set p;...,z will have the same asymptotic distribu-
tion as estimates of multinomial probabilities for m independent samples (z =
2, - -+, m), and may be represented by an m X m table. If the null hypothesis
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Dij.0 = pj..afori =1, 2, -+, m) is true, then the x'-test of homogeneity
seems appropriate, and

(3.21) x;z'...k = ZI nfj...k(i)i,-...“ - f)j...kz)z / i)j...kz )

where
T—1

T
(322) ﬁjn-kl = Z Nijeskl / Z 'ﬂ:‘j...k = ; nj...k;(t) t_z_;l nj...k(t),

has the usual limiting distribution with (m — 1) degrees of freedom. We see
here that ;... differs somewhat from the maximum likelihood estimate for
p;j...sa for an (r — 1)-order chain (viz., D imr1 %;...1(£)/ D imres m;.. 4(t)). This
difference is due to the fact that the n;.....(r — 1), for an (r — 1)-order chain,
are assumed to be multinomial random variables with parameters p;...;; while
in this paragraph we have assumed that the n;.. . (r — 1) are fixed.

Since there are m" ' setsj, -+, k (j=1,2, -+, m; -+ ; k=1,2, --- , m),
the sum ireeek Xo...x Will have the usual limiting distribution with m"™™ (m —1)°
degrees of freedom under the joint null hypothesis (p:;...i = pj....0 for ¢ =
1,2, ---, m and all values from 1 to m of 7, - , k) is true.

Another test of the null hypothesis can be obtained by use of the likelihood
ratio criterion

(3.23) Ajok = II Djeert/Dige )" H,

where —2 log A;.... is distributed asymptotically as x* with (m — 1)° degrees
of freedom. Also,

(324) ’Zk {'—2 log >\j---k} =2 . 'Zkl Mokl log(ﬁij---kl/i’jmkl)
Foeeo, LY AR

has a limiting x’-distribution with m *(m — 1)* degrees of freedom when the
joint null hypothesis is true (see [10]).

In the special case where r = 1, the test is of the null hypothesis that ob-
servations at successive time points are statistically independent against the
alternate hypothesis that observations are from a first-order chain.

The reader will note that the method used to test the null hypothesis that
the process is a chain of order r — 1 against the alternate hypothesis that it
is of order r can be generalized to test the null hypothesis that the process is of
order u against the alternate hypothesis that it is of order r (u < r). By an ap-
proach similar to that presented earlier in this section, we can compute the
x'-criterion or —2 times the logarithm of the likelihood ratio and observe that
these statistic are distributed asymptotically as x* with [m" — m*](m — 1) de~
grees of freedom when the null hypothesis is true.

In this section, we have assumed that the transition probabilities are the
same for each time interval, that is, stationary. It is possible to test the null
hypothesis that the rth order chain has stationary transition probabilities
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using methods that are straightforward generalizations of the tests presented
in the previous section for the special case of a first-order chain.

3.4. Test of the hypothesis that several samples are from the same Markov
chain of a given order. The general approach presented in the previous sections
can be used to test the null hypothesis that s (s = 2) samples are from the same
rth order Markov chain; that is, that the s processes are identical.

Let p¥ .0 = n. kl/n*( )k denote the maximum likelihood estimate of the
rth order transition probability p{; . for the process from which sample &
(h=1,2, ---,s) was obtained. We wish to test the null hypothesis that p{¥ ..,; =

pij..xforh = 1,2, --- s Using the approach presented herein, it follows that
(3.25) |X§j...k = Zh z’n:",(h) L(T)(h) kl — pu kl) /P(.)

where n{3 . = Doa . . and P = 0. kl/z,_; n.,) kv , has the usual
hmltmg distribution with (s — 1)(m — 1) degrees of freedom. Also, _;, ek

xij... has a hmltmg x'-distribution with m"(s — 1)(m — 1) degrees of freedom.
When s = 2, X j...k can be rewritten in the form

(3.26) Xijook = 220 Cioce Bt — . /DS aa,
where p{}. ... is the estimate of pi;....; obtained by pooling the data in the two
samples, and C7; ... = (1/n%".0) + A/n¥2.0). Also, Zi'j ..... k Xij..+ has the

usual limiting distributlon with m"(m — 1) degrees of freedom in the two sample
case.
Analogous reésults can also be obtained using the likelihood-ratio criterion.

3.5. A test involving two sets of states. In the case of panel studies, a person
is usually asked several questions. We might classify each individual according
to his opinion on two different questions. In an example in [2], one classification
indicated whether a person saw the advertisement of a certain product and the
other whether he bought the product in a certain time interval. Let the state
be denoted (a, 8), a = 1,---, Aand 8 = 1, ---, B where « denotes the first
opinion or class and 3 the second. We assume that the sequence of states satisfies
a first-order Markov chain with transition probabilities pas ., . We ask whether
the sequence of changes in one classification is independent of that in the second.
For example, if a person notices an advertisement, is he more likely to buy the
product? The null hypothesis of independence of changes is

(327) Papiwr = Qaplgy Oy o = 1) R} Arﬁ: Vv = 11 Ty B)

where g, is a transition probability for the first classification and rg, is for the
second. We shall find the likelihood ratio criterion for testing this null hypothesis.

Let n4p,(t) be the number of individuals in state (a, B) at t — 1 and (u, »)
at {. From the previous results, the maximum likelihood estimate of pags. .,
when the null hypothesis is not assumed, is

(3-28) i’aﬂ w =
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where 7.5, = - Nagw(t). When the null hypothesis is assumed, the max-
imum likelihood estimate of pg.4 15 au 76, , Where

B
Z Nag v
B,v=1

(3.29) fau = 57—,

Z Z naﬂ,sv

By=1 s=1

A

Z Nap,uv
(3.30) fgy = 2=l
Z Z NaB us

a,u=1 =7

“The likelihood ratio criterion is

T A B 2 A \Tap ()
33D A= 11 IT IT (%)

t=1 au=1 =1 \Pap,ur
Under the null hypothesis, —2 log A has an asymptotic x*-distribution, and
the number of degrees of freedom is AB(AB — 1) — A(A —1)— B(B—1) =
A-1)B—-1)(AB+ A + B).

4. A modified model. In the preceding sections, we assumed that the n.(0)
were nonrandom. An alternative is that the n,(0) are distributed multinomially
with probability #; and sample size n. Then the distribution of the set n.;(t)
is (2.5) multiplied by the marginal distribution of the set #;(0) which is

n! i )
(4.1) w— [I 2.
IT ni(0)1 ™
i=1
In this model, the maximum likelihood estimate of p;; is again (2.8), and the
maximum likelihood estimate of ; is

(4.2) i = ZL—'(—Oz .
n

The means, variances, and covariances of n;;({) — n;({ — 1)p;; are found by
taking the expected values of (2.20) to (2.23); the same formulas apply with
nx(0) replaced by nyy . Also n;;(f) — n:t — 1)p.; are uncorrelated with 7,(0).
Since n;(0)/n estimates 7 consistently, the asymptotic variances and covariances
of n'* (pi; — pi;) are as in Section 2.4. It follows from these facts that the
asymptotic theory of the tests given in Section 3 hold for this modified model.

The asymptotic variances -and covariances simplify somewhat if the chain
starts from a stationary state; that is, if

(4-3) ]; Nk Pes = N4«
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For then 2, n pit™ = #; and ¢; = T If it is known that the chain starts
from a stationary state, equations (4.3) should be of some additional use in the
estimation of p; when knowledge of the 7., or even estimates of the #;, are
available. We have dealt in this paper with the more general case where it is
not known whether (4.3) holds, and have used the maximum likelihood esti-
mates for this case. The estimates obtained for the more general case are not
efficient in the special case of a chain in a stationary state because relevant
information is ignored. In the special case, the maximum likelihood estimates
for the 5; and p;; are obtained by maximizing log L = > i log pi; + > n:(0)
log 7. subject to the restrictions Z;p,-,- =1, Z,- 1:Pi; = Mj, Ei n; =1, pi; =
0, 7 = 0. In the case of a chain in a stationary state where the 5; are known,
the maximum likelihood estimates for the p;; are obtained by maximizing
> n.; log pi; subject to the restrictions D pi; = 1, > nipi; = mi, pi; = 0.
Lagrange multipliers can be used to obtain the equations for the maximum
hood estimates.

6. One observation on a chain of great length. In the previous sections,
asymptotic results were presented for n;(0) — o, and hence > ni(0) =
n — oo, while 7' was fixed. The case of one observed sequence of states (n = 1)
has been studied by Bartlett [3] and Hoel [10], and they consider the asymptotic
theory when the number of times of observation increases (T — ). Bartlett
has shown that the number n;; of times that the observed sequence was in
state 7 at time ¢ — 1 and in state j at time ¢, for ¢ = 1, - - - | T, is asymptotically
normally distributed in the ‘positively regular’ situation (see [3], p. 91). He also
has shown ([3], p. 93) that the maximum likelihood estimates p:; = n,;/nf
(n¥ = 2.7, ni;) have asymptotic variances and covariances given by the usual
multinomial formulas appropriate to & nf independent observations (z = 1,
2, -+ -, m) from multinomial probabilities p:; (j = 1, 2, - - - , m), and that the
asymptotic covariances for two different values of ¢ are 0. An'argument like
that of Section 2.4 shows that the variables (n7)"* (p;; — pi;) have a limiting
normal distribution with means 0 and the variances and covariances given ir
Section 2.4. This result was proved in a different way by L. A. Gardner [8].

Thus we see that the asymptotic theory for 7 — » and n = 1 is essentially
the same as for T fixed and n;(0) — «. Hence, the same test procedures are
valid except for such tests as on possibly nonstationary chains. For example,
Hoel’s likelihood ratio criterion [10] to test the null hypothesis that the order
of the chain is r — 1 against the alternate hypothesis that it is r is parallel to
the likelihood ratio criterion for this test given in Section 3.3. The x-test for
this hypothesis, and the generalizations of the tests to the case where the null
hypothesis is that the process is of order % and the alternate hypothesis is that
the process is of order r(u < r), which are presented in Section 3.3, are also
applicable for large T'. Also, the x’-test presented in Section 3.1 can be generalized
to provide an alternative to Bartlett’s likelihood ratio criterion [3] for testing
the null hypothesis that p,;..... = DY;.. 51 (specified).
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6. x?-tests and likelihood ratio criteria. The x-tests presented in this paper
are asymptotically equivalent, in a certain sense, to the corresponding likelihood
ratio tests, as will be proved in this section. This fact does not seem to follow
from the general theory of x’-tests; the x*-tests presented herein are different
from those x’-tests that can be obtained directly by considering the number of
individuals in each of the m” possible mutually exclusive sequences (see Section
2.1) as the multinomial variables of interest. The x*-tests based on m” categories
need not consider the data as having been obtained from a Markov chain and
the alternate hypothesis may be extremely general, while the x’-tests presented
herein are based on a Markov chain model.

For small samples, not enough data has been accumulated to decide which
tests are to be preferred (see comments in [5]). The relative rate of approach
to the asymptotic distributions and the relative power of the tests for small
samples is not known. In this section, a method somewhat related to the rela-
tive power will be tentatively suggested for deciding which tests are to be pre-
ferred when the sample size is moderately large and there is a specific alternate
hypothesis. An advantage of the x’-tests, which are of the form used in con-
tingency tables, is that, for many users of these methods, their motivation
and their application seem to be simpler.

We shall now prove that the likelihood ratio and the x’-tests (tests of ho-
mogeneity) presented in Section 3.2 are asymptotically equivalent in a certain
sense. First, we shall show that the x’-statistic has an asymptotic x*-distribution
under the null hypothesis. The method of proof can be used whenever the
relevant p’s have the appropriate limiting normal distribution. In particular,
this will be true for statistics of the form x? (see (3.6)). In order to prove that
statistics of the form A; (see (3.7)), which are formally similar to the likelihood
ratio criterion but are not actually likelihood ratios, have the appropriate
-asymptotic distribution, we shall then show that —2 log A; is asymptotically
.equivalent to the xj-statistic, and therefore it has an asymptotic x*-distribution
under the null hypothesis. Then we shall discuss the question of the equiva-
lence of the tests under the alternate hypothesis. The method of proof presented
here can be applied to the appropriate statistics given in the other sections
herein, and also where ' — « as well as where n — .

Let us consider the distribution of the x’-statistic (3.8) under the null hy-
pothesis. From Section 2.4, we see that n'> (p:;(t) — p:;) are asymptotically
normally distributed with means 0 and variances p;;(1 — pi;)/m:(t — 1), etc.,
where m.(t) = &n,(t)/n. For different ¢ or different 7, they are asymptotically
independent. Then the [nm.(t — 1)]'* [p:j(t) — p:;] have asymptotically vari-
ances pi;(1 — pi;), etc. Let Pt = Domit — 1) pu(t)/2mi(t — 1). Then
by the usual x*-theory, X nm; (t — 1)[p:;(t) — p¥I/p¥; has an asymptotic
x’-distribution under the null hypothesis. But

(6.1) plim (3% — $:;) = 0
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because
(6.2) p lim (T — m;(t)) = 0.

From the convergence in probability of (pf; — p:;) and (mi(t) — ni(t)/n),
and the fact that n''* (p;;(t) — pi;) has a limiting distribution, it follows that
(t — b)) — HE)? (1 — 5.1 — D)2
(63) p lim I:nz m,(t 1)(1‘7:(0 pu) _ Z n,(t 1)(1311(0 pu) ] = 0.
Dij . Dij
Hence, the x’-statistic has the same asymptotic distribution as Y_nmi(t — 1)
[p:ij(t) — pEV/D%; that is, a x’-distribution. This proof also indicates that the
x;-statistics (3.6) also have a limiting x’-distribution. We shall now show that
—2log \; (see (3.7)) is asymptotically equivalent to x? under the null hypothesis;

and hence will also have a limiting x*-distribution.
We first note that for |z| < %

A4+2)log(l+2)=>0+z)(z —2°/24+2%/3 —2'/4 4+ --+)

(6.4) 2 s
z+x2/2 — (@/6)1 —=z/2+ ---),
and

65) |1 +a)log(l+2)—2z—32/2|=][@E/6)1 —z/2+ - )]
(see p. 217 in [6]). We see also that
—2log \i = —2 Z nii(t) log [pus/Ds(1)]

(6.6) =2 Zt nt — 1) ps;(2) log [Ds(t) /D)

2,

= 2 Zt ni(t — 1) pill + 5] log 1 + z;5(8)],

2,
where x;;(t) = [9:;(t) — Psjl/P:; . The difference A between —2 log A; and the
xa-statistic is
A= —2loghi — x}

=220 nit — Dpsi{[l + ()] log [1 + 24;(8)] — [24;(0)]/2}.

Since Z',L[ z‘njx;;(t) = 0,
(68, A=2 ; ni(t — Dpi;{[L + 2:;(0)] log [1 + zi;()] —zi() — [=:,(O)/2}.

(6.7)

We shall show that A converges to 0 in probability; i.e. for any ¢ > 0, the
probability of the relation | A | < ¢, under the null hypothesis, tends to unity as
n = 2.; nit) — =. The probability satisfies the relation

Pr|A| < e = Pr{|A] < eand |z, | < 1]
(6.9) Pr{|2 2 . nit — 1)pijlzi;®) | < eand | zi;(t) | < 3}
Pri2n 3. | zi(t) I < eand | zi(t) | < 3.

v v v
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It is therefore necessary only to prove that n[z;(t)]* converges to 0 in prob-
ability. Since 2;;(t) = [p:;(t) — P:;)/Pi; converges to zero in probability under
the null hypothesis, and

o - i) — pii | _ |5 — pi
(6,10) Vzii(tn z4(t) Vxii(t)n {I: Di; ] [ Dij ]} ’
it follows that
(6.11) nlz )] = [(@it)n)" zi(t)]

converges to zero in probability when the null hypothesis is true. Q.E.D.

Since the x’-statistic has a hmltmg x’-distribution under the null hypothesns
and A = —2 log \i — X} converges in probability to zero, —2 log A\; = x; + A
has a limiting x*-distribution under the null hypothesis.

The method presented herein for showing the asymptotic equivalence of —2
log A\; and x} could also be used to show the asymptotic equivalence of sta-
tistics of the form —2 log A and x’. It was proved in Section 3.2 that, under
the null hypothesis, —2 log A has a limiting x’-distribution with m(m — 1)
(T — 1) degrees of freedom. (The proof in Section 3.2 applied to A, a likelihood
ratio criterion, but would not apply to A; since they are not actually likelihood
ratios.) Hence, we have another proof that the x*-statistic has the same limiting
distribution as the likelihood ratio criterion under the null hypothesis.

The previous remarks refer to the case where the null hypothesis is true.
Now suppose the alternate hypothesis is true; that is, p.;(t) = pi;(s) for some
t, s, 1, j. It is easy to see that both the x’-test and the likelihood ratio test are
consistent under any alternate hypothesis. In other words, if the values of p;;(t)
for the alternate hypothesis and the significance level are kept fixed, then as n
increases, the power of each test tends to 1 (see [5] and [11]).

In order to examine the situation in which the power is not close to 1 in large
samples and also to make comparisons between tests, the alternate hypothesis
may be moved closer to the null hypothesis as n increases. If the values of
pii(t) for the alternate hypothesis are not fixed but move closer to the null
hypothesis, it can be seen that the two tests are again asymptotically equiva-
lent. This can be deduced by a slight modification of the proof of asymptotic
equivalence under the null hypothesis given in this section (see also [5], p. 323).

We shall now suggest another approach to the comparison of these tests when
the alternate hypothesis is kept fixed. Since the null hypothesis is rejected
when an appropriate statistic (x* or =2 log A) exceeds a specified critical value,
we might decide that the x’-test is to be preferred to the likelihood ratio test
if the statistic x* is in some sense (stochastically) larger than —2 log X under
the alternate hypothesis.

Since 7,(t) is a linear combination of multinomial variables, we see that
n.(t)/n converges in probability to its expected value &[ni(t)/n] = m;(t). Hence,
x’/n converges in probability to

(6.12) 2 mi(t — Dipis®) — pl’/bis

.3,
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and (—2 log \)/n converges in probability to

(6.13) 2 ?J:,t mi(t — 1)pi;(t) log [ps;(8) /D4,
where
(6.14) Dij = ; pi(O)mit — 1)/ ; mit — 1) = Pﬁgl Dij -

The difference between (6.12) and (6.13) is approximately
(6.15) 2oms (¢ — Dipi(t) — Disl'/ (3515).

Under the alternate hypothesis, these two stochastic limits. differ from 0,
and computation of them suggests which test is better. If (p:;(t) — Di;)/Ds; is
small, then there will be only a small difference between the two limits. When
the alternative is some composite hypothesis, as is usually the case when x*-
tests are applied, then these stochastic limits can be computed and compared
for the simple alternatives that are included in the alternate hypothesis.

This method for comparing tests is somewhat related to Cochran’s comment
(see p. 323 in [5]) that either (a) the significance probability can be made to
decrease as n increases, thus reducing the chance of an error of type I, or (b)
the alternate hypothesis can be moved steadily closer to the null hypothesis.
Method (b) was discussed in [3]. If methe (a) is used, then the critical value
of the statistic (x* or — log \) will increase as n increases. When the critical
value has the form cn, where ¢ is a constant (there may be some question as
to whether this form for the critical value is really suitable), we see from the
remarks in the preceding paragraph that the power of a test will tend to 1 if
¢ is less than the stochastic limit and it will tend to O if ¢ is greater than the
stochastic limit. Hence, by this approach we find that the power of the x’-test
can be quite different from the power of the likelihood ratio test, and some
approximate computations can suggest which test is to be preferred.

However, a more appealing approach is to vary the significance level $o the
ratio of significance level t¢ the probability of some particular Type II error
approaches a limit (or at least it seems that desirable sequences of significance
points lie between ¢’ and ¢n). While the usual asymptotic theory does not give
enough information to handle this problem, the comparison of stochastic limits
may suggest a comparison of powers.

The methods of comparison discussed herein can also be used in the study of
the x* and likelihood ratio methods for ordinary contingency tables. We have
seen that, in a certain sense, the x? and likelihood ratio methods are not equiva-
lent when the alternate hypothesis is true and fixed, and we have suggested a
method for determining which test is to be preferred.
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