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1. Summary. We.consider here the problem of minimizing and maximizing
|-%¢(z, F(z)) dz under the assumptions that F(z) is a cumulative distribution
function (cdf) on [—X, X] with the first two moments given and that ¢ is a
certain known function having certain properties. The existence of the solution
has been proved and a characterization of the maximizing and minimizing cdf’s
given. The minimizing edf is unique when ¢(z, y) is strictly convex in y and is
completely characterized for some special forms of . The maximizing cdf is a
discrete distribution and in the above case turns out to be a three-point dis-
tribution. Several statistical applications are discussed.

2. Introduction. Let z; < 2, < -+ = z, be n ordered independent observations
from a population with edf F(z) having standard deviation ¢. Let w, = x. — 2
denote the sample range. Then it is well-known that

@) Bw) = [ 2@ + 0 - F))
and
(2.2) E(z,) = f_w z d{F"(x)}.

Plackett [9] considered the problem of establishing universal upper and lower
bounds for [E(w,)]/ec on the lines of Chebycheff inequalities for moments.
Moriguti [14] considered an equivalent case of establishing bounds for E(z,),
but he assumed that the underlying distribution is symmetrical.

Gumbel [10] uses a variational method to derive the solution of the problem of
maximizing E(w,) and E(z,) over the class of continuous cdf’s with given mean
and variance and gives a sort of sufficiency condition. Hartley and David [1]
consider the same problem of maximizing E(x,) as in [10], and obtain the solution
of the problem of maximizing and minimizing E(w,) but they assume, in addition,
that F(z) is a cdf on the bounded range [— X, X].

" Integrating (2.1) and (2.2) by parts, we find that the problems of maximizing
(minimizing) E(w,) and E(x,) are the same as those of minimizing (maximizing)
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[F@r+a-F@ra s [ rora,

respectively, with appropriate restrictions on F(z). We see here that ¢(z, y) =
y"+ (1 — y)" oro(z, y) = y" is strictly convexiny for0 < y < 1.

There are many other situations in statistics where problems of maximizing
and minimizing an integral of a strictly convex function of F(z) occur. In the
evaluation of efficiencies of various nonparametric tests of hypotheses, we are
faced with integrals of the above type. For example, Birnbaum and Klose (7]
have derived a lower bound for the variance of the Mann-Whitney Statistic—an
improvement on the lower bound due to V. Dantzig, which is based on minimizing
Jo [F(z) — zI’ dz, where F(z)isacdfon0 < z < land [ F(x)dr =1 — p = }.
Here again [F(z) — zJ’ is strictly convex in F(x).

The above problems suggest a generalization.

We consider the problem of maximizing and minimizing an integral of
o(z, F(x)), where o(z, y) is strictly convex in y. A very special case of this is the
one where ¢(z, y) is a function of y alone and includes the important applications
of minimizing and maximizing E(w.), E(z.), etc. Many other authors, to name
a few such as Chernoff and Reiter [2], Rubin and Isaacson [13], Karlin [3, 4];
Hoeffding [11], Hoeffding and Shrikhande '[15], Brunk, Ewing and Utz [6], have
also considered related problems.

We have used Karlin’s [3, 4] technique in the solution of the minimum prob-
lem. We compare our technique with that of [2] and [3] in Section 6 and obtain
results similar to those in [2] and [3]. The maximum problem is discussed in
- Section 8. We find that the maximizing cdf is a discrete distribution and in our
case a three-point distribution. David and Hartley [1] have shown further that
" the minimizing cdf for E(w,) with given restrictions on mean and variance is a
two-point distribution. This does not seem to be true in general. Similar results
were obtained in [2], [11], and [15].

The results and techniques of our paper have many other applications besides
those discussed above. Many ¢lassical inequalities of the Chebycheff type can
be obtained with the help of our results. In Section 7 we discuss an example
where the techniques of this paper yield the solution to a problem of a
different type.

3. Statement of the problem and existence of its solution. Let § =
{(z,y): — X <z = X,0 £y = 1} where X is already specified.

Let ¢ be a function defined on the closed and bounded region S such that

(1) ¢ is bounded and continuous in S,
- (2) pis strictly convex and twice differentiable in y.
We shall minimize (maximize)

3.1) 1) = [ ole, F@) do
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over all F £ @ where @ is the class of all admissible edf’s, i.e., cdf’s satisfying the
following constraints:

(3.2) [i z dF(z) = i, [; 2’ dF () = pe,

and
_ )0, r < —X,
ro- ISR

Here w1 and p; are such that ps > i and gz < X*. In this case there exist cdf’s
satisfying (3.2) and hence class @ is non-null.
Integrating by parts the integrals in (3.2), the restrictions become

[ F@ iz = X - w,
(3.3) *

[; 2F(x) dx =

We shall first show that an admissible minimizing (maximizing) cdf exists.
Let & be the class of all cdf’s defined on [—X, X]. Then the following is well-
known [8]:

LemMa 3.1. F is convex and compact in the topology of convergence in distribu-
tion. (The compactness of Lemma 3.1 is a restatement of the Helly-Bray lemma.)

Define a transformation

T:F—R such that
ToF fx F)) d fXF( d /_\— F d)
° —<_x¢(x, (z)) dz, . z) dr, [ ® (x) dx ).

It is easy to see that T is a continuous transformation as ¢(z, y) is continuous
in y. But a continuous transformation maps a compact set into a closed and
bounded set [8]. Hence we have the following lemma.

LemMmA 3.2. The set T of points

<f_i o(z, F(z)) dz, [: F(x) dz, [i 2F(x) dx) , for Feg,

s a closed and bounded set in R.

The restrictions (3.3) define a cross section I'; of a closed and bounded set
T, and hence T, is also closed and bounded. Therefore, the minimizing and
maximizing points exist and are given by the boundary points of I'; so long as
T'; is non-null. But T'; is non-null as @ is non-null as seen before. Hence the mini-
mizing and maximizing admissible cdf’s exist.

4. Reduction of the minimum problem to subsidiary problems and uniqueness
of its solution. In this section we first prove the uniqueness of the minimizing
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cdf, using the property of strict convexity of the function ¢ in its second argu-
ment. In characterizing the solution of the minimizing problem, we use Karlin’s
method [3] to reduce the main problem of minimizing the integral (3.1) over the
class @ of admissible cdf’s, to a subsidiary problem of minimizing an integral of
a related function over all cdf’s §. This reduction together with the uniqueness
of the minimizing cdf gives us a characterization of the minimizing c¢df which
we give in the next section.

LemmMa 4.1. There is a unique cdf Fo , which minimizes (3.1) subject to the
stde conditions (3.3) when o(x, y) is strictly convex in y.

Proor. Suppose the solution is not uniqué. Let Fo(x) and Fy(x) be two distinct
admissible cdf’s which minimize (3.1). Let

X
M = min f o(x, F(z)) dz.
Feq v—X
As ¢ is strictly convex in y, for0 < A < 1,
X
[ oo Fi@) + (1 = W@ o

@) <3 [ ol Ro@ dz+ (1= [ oo, Fie) do

=AM+ (1 —-NM
= M.

But M is the minimum, and hence we have a contradiction.

We shall now prove the following lemmas, with the help of which we shall
reduce the main problem to a simpler problem.

LemMmn 4.2. Fo(x) minimizes (3.1) if and only if

X >¢
J
4.1) j: . g—g (x, Y) ly=roxF(z) dz = [ . 6_‘5 (2, Y) lymroarFo(z) dz

for all F ¢ Q.
Proor. For any other admissible cdf F(x), define

10) = [ ole,M@) + (L~ NF@) dr,  0SASL

As ¢ is twice differentiable in y, dp/dy exists and is continuous in ¥, and hence
I()\) is differentiable and is given by

ro) = ig-‘; (2 MPo@) + (1 — NF(@)(Fa(a) — Fx) do.

Since ¢ is strictly convex in y, it follows very easily that I(A) is a strictly convex
function of \. If Fo(x) minimizes (3.1), then I(\) achieves its minimum at A = 1;
and this is possible if and only if

I'A\) e £ 0,
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le.,

[, Z @) leralFia) - Pl dz < o,

or,

x 30 x5
[ @btz 5 [ 2 @0 sl da.
Conversely let (4.1) hold true. Then we have I'(A) | »-s < 0, and hence by the
strict convexity of I(A) we have I(1) < I(0) or,

[ ota mo@) dx < [ otz P iz,

ie., Fo(xr) minimizes (3.1). This proves the lemma.
We use the following notation:

> ¢

Ir.(F) = [

X

% (z, Fo(2))F(2) dz.

With the help of the above lemma, we find that the problem P; of minimizing
I(F) over all admissible cdf’s, is related to the problem P, of finding an admis-
sible F(z) which minimizes I,,(F). In fact, we are interested in finding an Fy
such that F, is a solution of P,p,. This looks like a complicated problem, but
we now have a problem linear in F which is relatively easy to deal with.

Because P; has a unique solution, Lemma 4.2 implies that there is one and
only one F, such that Fy solves Par, . This, however, does not mean that Py,
has a unique solution.

Let T:§ — T, be a transformation given by

ToF = ( E %: (z, Fo@))F(2) dz, [: F(@) dz, [z oF(z) dx) .

Obviously T is bounded and is linear and hence continuous in F. But as F is
convex and compact in the topology of convergence in distribution by Lemma
3.1, the transformation 7 maps the convex and compact set into a convex and
compact set Ty, and hence we have the following result.

Lemma 4.3. T, 28 a conver, closed and bounded set in three dimensions.

Solving Py, corresponds to finding the minimum among all points of I'; for
which

X
Lr(z)dx - X =,

X’—ﬂz
2 3

[: zF(z) dz =

and this will be a boundary point of the set T's.
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Suppose F solves Par, . Then F, corresponds to a boundary point of Ty, and
there is a supporting hyperplane of T; at the minimum point v = (uo, vo, wo),
i.e., for some 7o, 1, 72 and 53(no, m , 72 not all zero),

(4.2) Noo + Mmvo + nawo + 3 = 0,
and
(4.3) nou + v + gw + 32 0

for all other points (u, v, w) belonging to Ty , where

X
_[Fo
u = [x 3 (z, Fo(x))F(x) dx,
X X
v =f F(z) dz, w = f 2F(x) dx,
—X —X
therefore,
(4.5) no(u — uo) + m® — vo) + m(w — wo) = 0.
We shall see below that 5 can be taken positive and hence can be normalized

80 as to be equal to one. Therefore, by taking 7o = 1 in (4.5) we have

/_i [z—;j (@, Fo(@)) + m + m x] F(z) de

= f_ . [gi; (z, Fo(z)) + m + nzx] Fo(z) da.

Hence Fo(z) minimizes
(4.6) /_ . [g‘—; (x, Fo(x)) + m + 2 x] F(z) dx

among the class § of all edf’s on [—X, X].

Conversely, if Fo(z) ¢ @ minimizes (4.6), we have, retracing the steps, that
(w — uo) + Mm@ — vo) + ma(w — wo) = 0. Suppose F(zx) is admissible, and hence
v = voand w = wop, and hence u — u, = 0, i.e.,

.[ i gg (z, Fo(x))F(z) dz = ./_. i g% (z, Fo(x))Fo(z) da.

In other words, Fo minimizes I ¢, (F) over all admissible cdf’s Q.
We shall now show that 7, can be taken positive. Let

T = {(u* v, w): u* = u, (u, v, w) & Te}.

Then T is obviously convex and T; C T . up is the minimum of u subject
to the conditions that v = v, and w = wp . This implies that (uo, vo, wo) is also
a minimum point of I's and hence is its boundary point. Hence there is an

(no, m, m2) = (0, 0, 0) such that
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4.7) no(u* — uo) + m(v — vo) + ne(w — we) = 0
for points (u*, v, w) belonging to I's . Hence

no(u — uo) + Mm@ — vo) + na(w — wo) = 0
for ,(u, v, w) &€ Ty. Suppose 70 = 0. Then we have

m@ — vo) + n(w — wo) = 0,

or
[ . (m + ne2)F(x) do = [ . (m + nex)Fo(z) dz,

i.e., Fo minimizes [_¥ (m + nx)F(z) dz over all F ¢ F. Now . + n.x is either
nondecreasing or nonincreasing according as 7, = 0 or 9, £ 0, and hence the
unique minimizing cdf of the above integral is a two-point distribution with its
total mass concentrated at —X and X so that uy, = X°. But such a cdf is not
admissible and hence there is a contradiction.

It is easily seen now that 7o is not negative. Suppose 7o is negative. Consider
then a point (uo + h, vo, wo) € T's for some & > 0, so that from (4.7) we obtain

ﬂohgo,

which is again a contradiction. Hence 7 is positive.

REeEMARK, Another way to show that 7o # 0 would be as follows: 70 = 0 cor-
responds to boundary points of the set I'» where the supporting hyperplanes
are parallel to the u-axis, and hence (v, wo) corresponds to the boundary of the
projection T, on the (v. w) plane. But the conditions on the first two moments
are such that the given point (vo, wo) will be interior to the projection set, and
hence 70 # 0.

The previous argument applies only in the special case of the first two moments
of F(z) being given. In general when more moments are specified, the latter
argument will apply if we impose conditions on the given moments such that the
given point is interior to the moment space which is analogous to the projection
of the set I';. It easily follows then that 5o > 0, in general. Let

Ira® = [ [ 2 G Fad) + o+ me | F@)

and let the problem Pjp,,, be that of finding the minimum of I,y (F) over all
F(z) e%.

The above results are summarized in the following lemma.

LemMa 4.4. Fy solves Py, if Fo 18 an admissible cdf which solves Pspyyq, , and
any Fo which solves Pap, solves Pspy,y, for some m and 7, .

6. Characterization of the solution. In this section we characterize the solution
of the minimum problem in terms of f,,,,(x) which is that value of y for which

do _
a—y(x,y) 4+ m + mz = 0.
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Let
A@@) = Byny(z, Fol2)) = "—“’ (z, Fo(2)) + m + mz.

Since 6¢(:c ) is continuous in y, A(z) can have a discontinuity only if Fo(z)

has a )ump But as ‘o(x y) is increasing in y, the discontinuities of A(z) are

upward jumps. Also smce ¢ is continuous in the region
S={zy):—X=z=X,0=2y=1},

A(z) is bounded in S. We then have the following theorems which will char-
acterize the solution of our problems.

THEOREM 5.1. If Fy solves Psp gy, , the set {z: A(z) # 0, —X < z < X} has
Fy-measure zero.

Proor. Suppose that Fo is continuous on the right. Consider the set S, =
{r: A(x) > 0, —X < z < X}. It is a denumerable union of intervals [z, , ;).
We shall show that

'Fo(Iz) = Fo(ﬁ _)

and therefore, the interval [z;, x2) has Fy-measure zero. Suppose this were not
the case. Then as A(z) > 0 and is increasing in y, so that

waMnﬂm<waMﬂh

there is a contradiction. Consequently, S, has Fo-measure zero.

Consider now the set S, = {z: A(z) < 0, —X < z < X}. Because all dis-
continuities are upward jumps and A(x) is continuous on the right, S, is an
open set. Hence S, is denumerable union of intervals (z; , z2). Then we shall see
that Fo(z:) = Fo(zy) = 0 and that the Fe-measure of the interval (z; , z) is zero.
We also prove this by contradiction, as otherwise,

[ A@F@ iz < [ A@Fz) de.

Since S, is a denumerable union of such intervals, S, has also Fg-measure zero.

Hence the above arguments show that the set {z: A(z) % 0, — X <z < X}
has Fy-measure zero.

ReMaRks. 1. It is easy to see that if A(—X) > 0, then Fo(—X) = 0 and if
A(X) < 0, F, is continuous at X.

2. The following corollary shows that the integral of A(z) is zero over intervals
on which F is constant.

CoROLLARY. If Fo(z) be such that Fo(z) = ¢, 0 < ¢ < 1 fora =z < band
Fo(z) < cfor x < a, Fo(x) > cforx > b, then

fabA(x)dx - 0.
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Proo¥. Suppose [o A(z)dz < 0 and b < X. Replace Fo(z) on the interval
[a, b + &) for any small number § > 0, by the constant quantity Fo(b + 8).
Let v be the increase in I ry,4,(F) due to this replacement. Then

b4-3 b>+3
y fa A@)Folb; + 8) dz — f A@)Fol2) dz

b+6 b+3
= (Fo(b +8) — o) L A(z) dz — L A(2)[Fo(z) — ] dz

b
< [Folb +8) — d ( f A(z) dz + 2Ms), where |A(z)]| < M.

Letting 3 — 0, we find that » becomes negative and hence there is a contradic-
tion. The case where b = X is trivial.

If we suppose that fo A(z) dz > 0 and a is a point of continuity of Fo, then
by an argument similar to that above, we get the contradiction when a > —X,
by replacing Fo on (a — 8, b) by Fo(a — 5) and letting é — 0. In case a = —X
or there is a jump in F, at @, the proof is trivial.

Remark. If K(z) is a function satisfying the properties of the function A(z),
then the problem Px (corresponding t0 Psrqy,s,) of finding a cdf Fo such that.

1(F0) = min Ix(F) = min [ K@PF@) ds,
re§ re§ -X

gives the same results as stated in Theorem 5.1 and its corollary, i.e., if F, is
the solution of Px,

(a) the set {z: K(z) # 0, —X < z < X} is of Fo-measure zero.

(b) | K(z)Fo(z) dz is zero over intervals where F, is constant.

TueoreM 5.2. If Fy solves Piry,y, , then Fo has no_jumps on the open interval
(—X, X) and hence A(z) is continuous on (—X, X).

Proor. Let F, have a jump at zo, —X < z¢ < X. Then by Theorem 5.1,
A(zo) = 0. But since 3¢/dy is strictly increasing in y, zo is the right-hand end-
point of an interval on which A(z) < 0. By the same arguments as in the proof
of the Theorem 5.1, we see that on this interval Fo(z) = Fo(z), and-hence Fo
has no discontinuity. But because discontinuities of A(z) arise on account of
jumps of Fo, there are no discontinuities in A(z), or A(z) is continuous on the
interval (—X, X).

Let fyu(z) be defined with 0 = fun(z) = 1 such that By,(z, Jum(@)) = 0.
(The function f,,,, is defined on that subset of [~ X, X] for which there exists a
y between 0 and 1 such that By,,(z, y) = 0.)

- As 3¢(z, y)/dy is continuous and strictly increasing in ¥, fy»,(2) is continuous
wherever it is defined. If 0 < f,,5,(%0) < 1, then f,,,, is defined in some interval
about 7o (the interval is one-sided if zo = ==X). Graphically f,,,, represents a
number of curve segments which terminate when f,,,,(7) is zero or one.

More specifically, fy.,(z) is defined on the union of closed intervals at the
end-points of such of which it is either zero or one. Let [a:, bs] and [a;, bj] be
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two such intervals, not separated by any others such that b; < a;, then f,,,(b:;) =
Jun(@;). If there are an infinite number of intervals [a;, b;] in the neighborhood
of b;, it follows that

fﬂwz(bi) = fﬂwz(af) = f'lmz(bj)

for b; sufficiently close to b; . Hence the following definition of a function gy,,,

has a meaning.
DEeriniTiON. Define g,,,, to be that unique function on [—X, X) which is
continuous on [—X, X) such that

Toins (@) = Jan (%), where f,,,, is defined,
e Oorl, elsewhere,
and
g'u'lz(X) = 1,

provided that the subset of [—X, X) for which f,,,, is defined, is non-null.

TuEOREM 5.3. If Fo solves Pspgyy, , then for —X < x < X, Fy coincides with
Jning €2CEDL 0N tnlervals on which Fo is constant.

Proor. From Theorems 5.1 and 5.2, we know that F, has no jumps on (— X, X)
and F, cannot increase when A(z) = 0. Therefore, F remains constant until it
intersects with f,,,, .

COROLLARY. If ¢, 18 @ cdf, then Fo(z) = gy,q,().

REMARKS. 1. We can represent a conceivable situation by Fig. 1.

2. It must be noted that the corollary to Theorem 5.1 puts a strong restriction
on the intervals on which F, is constant.

3. The solution in the general cage may not be completely specified, but we
shall consider in the following some special cases where the minimizing cdf
is completely characterized.

Special Cases.

I. When d¢(z, y)/dy is nonincreasing in z.

TuEOREM 5.4. If do(z, y)/0y is nonincreasing in x and 9, < 0, then Fo(z) =

Gains (@) for — X < z < X.
\ J/

J__
/ N——

= N\ ‘/

~ V.

Legend : w defictes P (x), ___ denctes £ (x), . denctes (x).
LR WM W2

Fig. 1
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Proor. If the conditions of the theorem hold, 4 () is a decreasing function of
x and hence fy,,, is increasing in z so that g, is a cdf. We get the result of the
theorem, then, by the corollary to Theorem 5.3.

II. When ¢ is a function of y alone, i.e., o(z, y) = ¥(y).

LemMma 5.1. If o(z, y) = ¥(y), then corresponding to Fo , which is the solution of
Py, 13 is negative.

Proor. If 5, = 0, 7, + 2% is nondecreasing. Also as ¢/(y) is nondecreasing in
z, the function A(z) = ¢'(Fo) + m + mx is nondecreasing in z. Therefore,
Jame() is nonincreasing, and hence from Theorem 5.3, it follows that Fy is con-
stant on [—X, X). But for such Fo, u; = X?, and hence Fy is not admissible.
Therefore, 5, < 0.

Theorem 5.4 and Lemma 5.1 imply, then, the following theorem.

TrEOREM 5.5. If o(z, ¥) = ¥(y), the solution Fo of Py is given by gy,y, for some
M, N2.

Remark. Unfortunately it is not always true that 7. < 0 as assumed in
Theorem 5.4. In fact for side conditions corresponding to small variance, one
has . > 0. It might still happen that f,,,, is nondecreasing, and then the result
of Theorem 5.4 still holds. In any case Theorem 5.3 with the corollary to Theorem
5.1 gives a useful characterization of the solution of our problem.

6. Comparison of our Technique with that of Gumbel [10] and Chernoff and
Reiter [2].
(i) Gumbel’s Method. The problem considered by Gumbel is that of maximizing

1
(6.1) j S(F)nF™ dF,
0
with restrictions
1 1
f 2(F) dF = 0, f (F) dF = 1.
0 0

A variational technique has been used to derive the form obtained for the
maximizing cdf is given by equating to zero, the first variation of

62) [ tnaBF 4 () + m(E)) F,
ie.,
(6.3) nF™ + g+ 2n2(F) = 0, 0<F =1

The above equation gives a sort of sufficiency condition as any admissible F
given by (6.3) does maximize the integral (6.2) and hence maximizes (6.1).
David and Hartley [1] have given an ingenious argument to prove the sufficiency
of the solution, but that seems unnecessary. However, the above equation does
not give the necessity of the solution, since this approach does not provide an
argument for proving that the constants 7, and 7. , to make the cdf admissible,
always exist.
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This method also extends to the case of a bounded random variable as treated
in this paper.

We shall use the above approach for our problem. Integrating by parts, we
have

[ #ta ¥ @z = aota, o)) |~ [ 2% @, P
Now
dola, F(a)) = 32 (2, F(a) d + 3 (, Fla) aF.

When ¢(z, F(x)) is a function of F alone, say, ¢(F(z)), d¢ = ¢'(F) dF, and hence
the problem of minimizing

[ wr) ae
i the same as that of maximizing
[ W) dF.
Hence using Gumbel’s approach, we maximize
[ BEWE®) + n2) + @) ap

and get the following equation satisfied by the admissible maximizing cdf,

V(F) + m + 29(F) = 0.

In the above case, our technique would also lead to a similar equation. But
in the general case when we consider ¢(z, F(z)), Gumbel’s approach does not
seem to apply.

(i1) Chernoff and Reiter Method. Chernoff and Reiter [2] consider the problem
of minimizing and maximizing

f g(z) dF(z),
with side conditions
f zdF(z) = ¢, f 2 dF(z) = ¢

such that ¢, > ¢f and g(z) is a continuous function of z.
In the process of reduction of our main problem, we have an intermediary
problem Pj;, of finding the minimum of

X

L) = [ % @ F@IF@) dz
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over all admissible cdf’s @. Now as
1@ = [ 2 @ Fia)) ao
is continuous in z, integrating by parts I,(F), we have
I,,(F) = constant — [ J(z) dF(z),
X

or we maximize

[ 1@ area)

X

over all admissible cdf’s @. Now as f(z) is continuous, by the methods of Chernoff
and Reiter, the necessary condition for the maximum is given by the following.
(a) There is an y; and %: such that when z is a point of continuity of F(z),

Buw(z, Fol@)) = 2 2 @ Foe) + m + 2mz = 0

except on a set of Fo-measure zero
(b) Fohasno jumpin —X < z < X, otherw:se either B,,,.(z, Fo(z)) > 0 or
Byu:(z, Fo(z—)) < 0. Hence we get a result similar to our result obtained in

Section 5, i.e., the set
{2:Byy(z, Fo(z)) #0, —X <z < X}
has Fy-measure zero.

7. Examples. In this section we discuss some examples to illustrate the method
of obtaining the minimizing edf for our problem for some specified function ¢.
We also discuss an example of the special case ¢(z, ¥) = ¥(y). We have included
an example where the methods of the paper have been used to solve a problem
of a different type.

ExampLE 1. Consider the problem of finding

min % f: Fz) — o dz

when @ denotes the admissible class of cdf’s as in Section 3.

This is the special case of a more general problem where we minimize
[*x¢(F(z) — z)dz for F £ G. Here y(y — z) = 3(y — z), ¥ being a strictly
convex, bounded, and continuous function of its argument. This problem has
also been discussed by Birnbaum and Klose [7], as a lemma to derive a lower
bound for the variance of the Mann-Whiteny Statistic.

If o(z, y) = ¥(y — ), ¢ is strictly convex in y and it is easy to verify that
(0%0)/(9zdy) < 0. We know that the solution exists and is unique, and the
problem is reduced to that of finding an n; and 7; so that Fo solves P;p,,,, Where
Piryas, i8 the problem of finding F £ § which minimizes
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X
—X

[ W@ — ) + m + malF@) da.

Then by the theorems of Section 5, we know that Fo(x) is given in terms of
Gnin, (), Where g,,,,(z) is uniquely expressed in terms of the function

f'n'lz(x) =z ‘)V-l(_ﬂl — ).
Returning to our example, we have the function

fm'iz(x) = (1 — p)z — M,

, 1+
f"ll"lz(x) =0 for m = i 2_1172’ fﬂlﬂz(x) =1 for xz, = 1= :77:
Case 1. 7 < 1. Then f,,,, is increasing. Define g,,,,(z) by the following.
0, z < max (—X, z1),
gnina(T) = 11, z = min (z;, X),
(1 — m)z — 0, elsewhere.

As Gning isa Cdf’ Fo(ﬁ?) = gﬂmz(x)'

Case 2. 93 = 1, fy,4,(x) is nonincreasing, and hence the solution is either a
one-point distribution or a two-point distribution with total probability concen-
trated at — X and X. In both cases, then, the solution is not admissible.

ExampLE 2. Consider the same problem as in Example 1, but with an addi-
tional restriction on the cdf F(z), i.e., F(x) = x. Now let F(z) be a cdf on [0, 1].

Under this additional restriction, the class @* of admissible cdf’s is also com-
pact and convex. Then the solution to this problem exists. It is unique since
o(z, y) = 2(y — z)° is strictly convex in/y.

Applying the methods used to prove Lemma 4.2, we see that the problem is
the same as that of minimizing

£ l [Fo(z) — 2)F(x) dx

over all F ¢ @*. It is easy to see that the set analogous to I'; of Lemma 4.3 here
is also convex, closed and bounded, and hence, applying the method of Lemma
4.4, we reduce the problem to that of finding the c¢df’s corresponding to

1
min [ Fe@) = 2 + m + 9alF(z) do
or
’ 1
min f (Fol@) + m + nsalF(z) dz, 15 =1 — 1
ch 0

where § is the class of all cdf’s F on [0, 1] such that F(z) =z z. We can now
apply the methods of Section 5. Define the function f,,,, withz =< f,,,,(x) < 1
such that
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Juns(®) = —m — .
Define the function gy,,, such that
Fans (%), where f,,,, is defined,
Gnans (%)
zorl, elsewhere on [0, 1],

Gnuns (%) is continuous on [0, 1], and gy, (1) = 1

Then gy,,, gives the solution F, of the problem if g,,4,(2) is a cdf. We shall give an
explicit characterization of g,,,, in the various possible cases. Let the point of
intersection of y = —m — mx and y = z be denoted by z* = —[n/(1 + n3)].
Let z** be such that —n, — 9,2** = 1.

Case 1. 93> —1.

(@) x*=0
fO, z <0,
g"llﬂl(x) = 1%, 0=sz<1.
1(1, z= 1.

This gy,», is a cdf, but it is not admissible.
(b) 2* > 1

0, <0
Guins(T) = {—m — ns%, 0 <z <,
1, T > ¥,

If 2** > 0, gyn, is a cdf and hence Fo(z) = g9, (2)-

If z** < 0, the solution is a one-point distribution with mass concentrated at
z = 0, which is not admissible.

(¢) 0 < 2* < 1. Consider (i) =1 <73 <0

0, <0
—m — 7%, 0sz<z2*
x =
g’nﬂa( ) : x* é T é 1
1, z = 1.

This is again a cdf, and hence Fo(z) = g0, ().

@) 75 >0
0, z <0,
N _ M — M, 0=2z=2%
g'll"la(a’) - x’ x* é z g 1’
1, z=1.

This g,s, is not a cdf. Here A(z) = Fo(z) + m + nw. Atz = 0, A(z) > 0 if
Fo(z) > —mand A(z) < 0 if Fo(x) < —mn: . Suppose there is a jump at z = 0
such that Fo(0) > —n:, then A(0) > 0, and Fo(x) is then continuous at z = 0.
Hence there is a contradiction. Let there be a jump at £ = 0 such that ¢ =
Fo(0) < —n1, A(0) < 0 and hence we take as a possible minimizing cdf
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0, z <0,

c, 0=z<e¢
G(x)=:c, c__<_z<1:

1, z> 1.

The remark after Theorem 5.1 puts the following restriction on ¢,
£ (¢ +m + ns2) dz = 0,
ie.,
(¢ + me +’21362.= 0, or c¢=—[m/(p/2+ 1),
since ¢ = 0 gives an inadmissible edf. Incidentally this shows also, as is evident
from the value of ¢ itself that
*F<e< —.

The unique value of ¢ which is obtained from the constraints exists if and only if
(7.1) 1 —2m)* = (1 — 3m)"
This condition is obtained by eliminating ¢ between the equations

1-¢_d+41

1
= f— = 2 —_—
fo F@)ds =1-m=¢+17 :

and
é+2
3 -
Hence G(z) is admissible and Fo(z) = G(z) if and only if u; and p. are such that
(7.1) is satisfied.

Case IL. 93 < —1.
(a) z* < 0. We then have

1
2]0 xF(x)dz=1—n2=c3+32-(1—c°) =

0, z <0,
g'n'la(x) = 3y—m — 7%, 0=z< 2:**,
1, z = z*.

If z** > 0, g,,y, is a cdf and hence Fo(z) = gy,q,(z). If ** < 0, the minimizing
cdf is a one-point distribution and is not admissible.
.(b) z* > 1. The minimizing cdf is the same as in Case I (a) and is not
admissible.
(e) 0 < z* < 1. Then we have
o, z <0,
(z) = {% 0=<z=z%
Inuns\T) = —m — sz, .’C*<z<$**,
z, T > ¥
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Juns 18 & cdf, and hence Fo(z) = gy, (2)-

ExampLE 3. Let 2; < 2, < --- < z, be n ordered, independent observations
from a cdf F(x). Consider the problem of maximizing E(z,) with restrictions
(3.2). The same problem for cdf’s defined over the whole real line with restrictions
on mean and variance has been discussed by Gumbel [10] and David and Hartley

{11
X
B = [ za(F@)"
X
Integrating by parts, the above problem reduces to that of finding
x
min | F"(z) dz.

FPea -X

Now as ¢(z, y) = y" is strictly convex in y and is a function of y alone, the
solution Fo(z) is given by the function g,,,,(z), where

z < max(—- ’—'—l, ——X),
0, N2
Gun(z) = 1 z 2 min (X, -z :;’");
]
1/n—1
(—- 1anz) » elsewhere.
\

Here m; and 7, are determined by the following four cases:

max(z;, —X) min(zz, X)

Case 1. n Z2
Case 2. -X 2
Case 3. -X X
Case 4. n X

We give below the equations determining 7, , ; in the above cases.

1
Casel. = ——(1 +n),

N2

_1 2 n’
m—;g(m‘l'zm‘l'zn_l)-
. — 1 1 1
Case2. p = —Z—E“’( 1)__1‘11, F=-(—m+ 2X),
72 N2 n

It

M2

("'_"'_1'_1)2 -2 [’&“—‘“19 + n — Dy — (n — 1)

72 ;% 2n —
n?
X(ﬂ1+n_ IE)]
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Case 3. M1 = X + 7—L——l (i‘nln-l - E”/”—l)y § =

72
_ 2_27& n—1 nin—1 _  en/n—1 n(n-‘l)
T | L= P L

2n—1)/ (n—1) @n—-1)/ (n—1)
. (g.( [ (n _ E /(n ).

(=m — 7 X),

S

Cased. m=X+2 1’;‘ 1 (/oD
2

_y2_n[®—=1Dm aen  nn—1) (21.—1)/(»-1)]
pe = X 17—2[ 7 § + o — 1 3 .

Fig. 2 represents 7, and 7, in terms of u; and p for the case X = 1.
Similar results can be easily obtained for maximizing the expectations of the

range and the smallest observation with similar restrictions on the underlying
cdf’s.

8. Characterization of the solution of the maximum problem and some ex-
amples. In this section we find the solution to the problem of maximizing

10y = [ ola, 7o) da

over all admissible cdf’s. The existence of the maximizing cdf has already been
established by Lemma 3.2. We shall show now that the solution is a discrete
distribution and in our case, is at most a three-point distribution, i.e., a distribu

7, ond 1), in terms of p and p,
F1e. 2
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tion concentrating all its mass at just three or fewer points. Some illustrations
have been given at the end of this section.

TreorEM 8.1. The solution to the problem of maximizing I(F) over the class G
of admissible cdf’s, is at most a three-point distribution.

Proor. The inequality (4.0) shows that a convex combination of two maxi-
mizing admissible cdf’s which is itself also admissible, gives a value which is
smaller than the maximum. Hence the maximum of I(F) occurs for cdf’s which
correspond to the extreme points of the convex set Q.

By Theorems 21.1 and 21.3 of Karlin and Shapley [5], it is then easy to see
that the maximizing cdf is at most a three-point distribution.

REemMARK. It is important to note here that in some cases, the maximizing
admissible cdf can be further reduced to a two-point distribution [1], (3].

We shall illustrate the above results by a few examples.

ExampLE 1. Suppose we want to minimize E(x,) given in Example 4 of the
last section, over all admissible e¢df’s. The problem is the same as that of maxi-
mizing

[ i F(z) da

over all admissible cdf’s. As o(z, y) = ¥", is strictly convex in y, the maximizing
admissible cdf of the above integral is at most a three-point distribution.
Similarly the minimizing admissible edf of E(w,) is at most a three-point dis-
tribution. David and Hartley [1] claim that it can be further reduced to a two-
point distribution.
ExaMmpLE 2. Suppose we are interested in finding the maximizing cdf of

%‘/:j [F(z) — ]’ dzx

such that F(z) satisfies side conditions (3.3).
Now o(z, y) = %(y — z)* is strictly convex function of y. Hence the solution
of the above problem is at most a three-point-distribution.
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Chernoff who suggested the problem and gave generous help and guidance
throughout the entire work.
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